K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

Khi x=2018 thì

P=\(2018^{2016}-2019.2018^{2015}+2019.2018^{2014}-...-2019.2018+2020\)

=\(2018^{2016}-\left(2018+1\right).2018^{2015}+\left(2018+1\right)\\ .2018^{2014}-...-\left(2018+1\right)2018+2020\)

=\(2018^{2016}-2018^{2016}-2018^{2015}+2018^{2015}+\\ 2018^{2014}-...-2018^2-2018+2020\)

=2

15 tháng 5 2020

Vào Tkhđ của mik xem có ảnh ko nhé !

15 tháng 5 2020

https://m.imgur.com/a/o7Vo0kL

 CHịu khó gõ link.onl đt bèn làm ntnày thôi nha

Ảnh trên không hiện rồi nhé !

19 tháng 3 2018

Thay x = 2018 vào \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\) ta được 

\(2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018-1\)

\(=\)\(2018^{2018}-2019\left(2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\right)-1\)

Đặt \(B=2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\)

\(2018B=2018^{2018}-2018^{2017}+2018^{2016}-...-2018^3+2018^2\)

\(2018B+B=\left(2018^{2018}-2018^{2017}+...+2018^2\right)+\left(2018^{2017}-2018^{2016}+...+2018\right)\)

\(2019B=2018^{2018}-2018\)

\(B=\frac{2018^{2018}-2018}{2019}\)

\(\Rightarrow\)\(A=2018^{2018}-2019.B-1\)

\(\Rightarrow\)\(A=2018^{2018}-\frac{2019\left(2018^{2018}-2018\right)}{2019}-1\)

\(\Rightarrow\)\(A=2018^{2018}-\left(2018^{2018}-2018\right)-1\)

\(\Rightarrow\)\(A=2018^{2018}-2018^{2018}+2018-1\)

\(\Rightarrow\)\(A=2018-1\)

\(\Rightarrow\)\(A=2017\)

Vậy giá trị của \(A=2017\) tại \(x=2018\)

Chúc bạn học tốt ~ 

Ta có: x=2018

nên x+1=2019

Ta có: \(A=x^5-2019x^4+2019x^3-2019x^2+2019x-2020\)

\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2020\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)

\(=x-2020=2019-2020=-1\)

9 tháng 4 2018

\(E\left(x\right)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E\left(2018\right)\) nên :

\(\Rightarrow E\left(x\right)=2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018+1\)

Tới đoạn này thì ghi dấu "=" rồi tính và làm tương tự

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải

Ta có:

\(E(x)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E(x)=(x^{2018}-2018x^{2017})-(x^{2017}-2018x^{2016})+(x^{2016}-2018x^{2015})-....+(x^2-2018x)-x+1\)

\(E(x)=x^{2017}(x-2018)-x^{2016}(x-2018)+x^{2015}(x-8)-...+x(x-2018)-x+1\)

\(E(x)=(x-2018)(x^{2017}-x^{2016}+x^{2015}-...+x)-x+1\)

Suy ra \(E(2018)=-2018+1=-2017\)

19 tháng 5 2018

Ta có: x = 2018 \(\Rightarrow x+1=2019\).

\(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019+1\)

\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)

\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)

\(=-x-1=-2018-1=-2019\)