K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

tu ke hinh : 

a, xet tamgiac MHB va tamgiac MKC co : HM = MK (gt)

CM = MB do M la trung diem cua BC(gt)

goc HMB = goc KMC (doi dinh)

=> tamgiac MHB = tamgiac MKC  (c - g - c)

xet tamgiac HMC va tamgiac KMB co : HM = MK (gt)

goc HMC = goc KMB (doi dinh)

MC = MB (cmt)

=> tamgiac HMC = tamgiac KMB (c - g - c)

=> goc CHM = goc MKB 

ma goc CHM = 90 do MH | AC (gt)

=> goc MKB = 90 

b, MH | AC (gt)

tamgiac ABC vuong tai A (gt) => AB | AC (dn)

2 duong thang nay phan biet

=> HK // AB (dl)

MH | AB (gt) 

goc MKB = 90 (cau a) => MK | KB 

2 duong thang nay phan biet

=> AC // KB (dl)

goc AHB so le trong HBK 

=> goc AHB = goc HBK (tc)

xet tamgiac AHB va tamgiac KBH co : HB chung

goc HAB = 90 = goc HKB do. ...

=> tamgiac AHB = tamgiac KBH (ch - gn)

=> AH = KB (dn)

c,  tamgiac HMC = tamgiac KMB  (Cau a) => CH = KB 

AH = KB (Cau b)

=> CH = HA 

xet tamgiacHMC va tamgiac HMA co :  HM chung

goc CHM = goc MHA do HM | AC (gt)

=>  tamgiacHMC = tamgiac HMA (2cgv)

=> MC = MA (dn)

=> tamgiac MCA can tai M (dn)

a) xét tam giác MHC và tam giác HKB có

MK=MH (GT)

BM=MC(GT)

GÓC M1=GÓC M2 (đối đỉnh)

suy ra tam giác MHC bằng tam giác HKB (c-g-c)

do tam giác MHC bằng tam giác HKB nên góc H bằng góc K= 90 độ

suy ra góc HKB bằng 90độ

29 tháng 4 2018

M B A C H G K
a) - Xét tam giác MHC và tam giác MKB có :
    BM=AC ( Do M là trung điểm BC )
  Góc BMK= Góc HMC ( đối đỉnh )
    MK=MC( theo giả thiết )
=) Tam giác MHC = tam giác MKB (c.g.c)
=) Góc HKB = góc MHC=90 độ ( 2 góc tương ứng )
b) - Có KH vuông góc AC
AB vuông góc AC 
=) AB//KH ( đpcm )
=) góc MAH=góc BMA và góc BMA=góc MBK ( So le trong )
=) Góc MAH=góc MBK
- Xét tam giác MKB và tam giác MHA có
Góc MBK=góc MAH(chứng minh trên)
Góc BKM= góc MHA = 90 độ
MH=MK( theo giả thiết )
=) tam giác MKB=tam giác MHA ( cạnh góc vuông-góc nhọn) 
=)BK=AH ( 2 cạnh tương ứng )
* Có thể chứng minh theo cách đoạn chắn nữa(Nhiều cách lắm)
c) - Vì tam giác MHC= tam giác MKB ( chứng minh a )
=) BK=HC( 2 cạnh tương ứng)
Mà BK=AN ( chứng minh b0
=) HC=AN =) H là trung điểm AC 
=) MH là đường trung tuyến của tam giác MAC mà MH đồng thời là đường cao của tam giác MAC
=) Tam giác MAC cân tại M.
d) - Có M là trung điểm BC =) AM là đường trung tuyến BC mà BH cũng là đường trung tuyến AC(chứng minh trên)
và BH cắt AM ở G =) G là trọng tâm của tam giác ABC( giao 3 đường trung tuyến )
=) AG = 1/3 AM (1)
Lại xét tam giác BGC có : GB+GC > BC ( theo bất đẳng thức tam giác ) (2)
Lại có tam giác ABC vuông tại A mà AM là đường trung tuyến BC 
=) AM = 1/2 BC (theo tính chất) 
Từ (1) =) 3AG=3.1/3AM=AM = 1/2 BC
=) 3AG<BC
Mà theo (2) thì GB+GC>BC =) GB+GC>3GA =) Đpcm .
 

29 tháng 4 2018

AN ở đâu vậy bạn 

7 tháng 4 2020

Bạn kiểm tra lại đề bài nhé!

Câu a) 62+122\(\ne\)152 nên tam giác ABC không thể vuông 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔMHC và ΔMKB có

MH=MK

\(\widehat{HMC}=\widehat{KMB}\)

MC=MB

Do đó: ΔMHC=ΔMKB

20 tháng 6 2020

A B C H K M G

Bài làm:

a) Ta có: \(\hept{\begin{cases}AB^2+AC^2=9^2+12^2=225\left(cm\right)\\BC^2=15^2=225\left(cm\right)\end{cases}}\)

\(\Rightarrow AB^2+AC^2=BC^2\)

Áp dụng định lý Pytago đảo => Tam giác ABC vuông tại A

=> đpcm

b) Xét 2 tam giác: \(\Delta MHC\)và \(\Delta MKB\)có:

\(\hept{\begin{cases}MK=MH\left(gt\right)\\\widehat{HMC}=\widehat{KMB}\\MB=MC\left(gt\right)\end{cases}}\)(đối đỉnh)

=> \(\Delta MHC=\Delta MKB\left(c.g.c\right)\)

=> đpcm

c) Áp dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông

=> \(AM=\frac{1}{2}BC=MC\)

=> Tam giác AMC cân tại M, mà MH là đường cao xuất phát từ đỉnh trong tam giác cân AMC

=> MH đồng thời là đường trung tuyến của tam giác AMC

=> H là trung điểm AC

=> BH là đường trung tuyến của tam giác ABC

Mà AG,BH là 2 đường trung tuyến của tam giác ABC cắt nhau tại G

=> G là trọng tâm tam giác ABC

=> đpcm

Học tốt!!!!

20 tháng 6 2020

Ở đoạn xét 2 tam giác mình viết bị lỗi, bạn viết thêm cho mình MB = MC (giả thiết) nhé!

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Vậy: AC=12cm

câu b,c đâu rồi