Tìm GTLN của biểu thức:P=-(4/9.x=12/15)^2016 -2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=-\left|x-\dfrac{1}{10}\right|+9< =9\)
Dấu '=' xảy ra khi x=1/10
c: \(D=\left|x-2015\right|^{2015}+\left(y-2016\right)^{2016}+1>=1\)
Dấu '=' xảy ra khi (x,y)=(2015;2016)
a) Tìm GTNN của biểu thức : |x - 2015| + |x - 2016|.
b) Tìm GTLN của biểu thức : \(\sqrt{8+2x-x^2}\).
a)=**** 100%
b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%
Ta có : \(\left|x+2\right|+5\ge5\forall x\)
Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)
<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)
Vậy Amax = 2 khi x = -2
- Ta có : \(-2\left(x-1\right)^2\le0\Rightarrow A=15-2\left(x-1\right)^2\le15\)
Vậy Max A = 15 <=> x = 1
- \(-\left(x^2-4\right)^2\le0\Rightarrow B=-2015-\left(x^2-4\right)^2\le-2015\)
Vậy Max B = -2015 <=> x = \(\pm2\)
\(A=15-2\left(x-1\right)^2\)
Vì \(-2\left(x-1\right)^2\le0\)
\(\Rightarrow15-2\left(x-1\right)^2\le15\)
Khi \(x-1=0\)
\(x=1\)
Vậy \(GTLN\) của A là 15 khi x = 1
\(B=-2015-\left(x^2-4\right)^2\)
Vì : \(-\left(x^2-4\right)^2\le0\)
\(\Rightarrow-2015-\left(x^2-4\right)^2\le-2015\)
Vậy GTLN của B là -2015 khi x = 2 ; x = -2