cho hàm số : y=x2-4x+3
a, Lập bảng biến thiên và vẽ đồ thị (P) của hàm số
b, Viết phương trình đường thẳng đi qua giao điểm của (P) với trục Oy và song song với đường thẳng y=12x+2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta=16-12=4\)=> ymax=-\(\frac{\Delta}{4a}=-\frac{4}{4}=-1\); xmax=2
=> Đỉnh của Parapon là: (2; -1)
Đồ thị cắt trục hoành tại 2 điểm là nghiệm của PT: x2-4x+3=0
<=> x2-4x+4-1=0 <=> (x-2)2-1=0 <=> (x-2-1)(x-2+1)=0 <=> (x-3)(x-1)=0
=> x1=1 => y1=0
Và x2=3 => y2=0
3: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=0 và y=-2 vào (d'), ta được:
b-0=-2
hay b=-2
Lời giải:
1. Đồ thị $y=-x+1$ có dạng như sau:
2. $A\in Ox$ nên $y_A=0$
Ta có: $y_A=-x_A+1\Leftrightarrow 0=-x_A+1\Leftrightarrow x_A=1$
$B\in Oy$ nên $x_B=0$
Ta có: $y_B=-x_B+1=-0+1=1$
Diện tích tam giác $OAB$:
$S=\frac{1}{2}OA.OB=\frac{1}{2}|x_A|.|y_B|=\frac{1}{2}.1.1=\frac{1}{2}$ (đơn vị diện tích)
3.
Vì $(d')$ song song với $(d)$ nên nó có dạng $y=-x+m$
Tung độ gốc $=-2$ tức là $m=-2$
Vậy $(d'): y=-x-2$
b. PTHĐGĐ của hai hàm số:
\(x+2=-2x+1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
Thay x vào hs đầu tiên: \(y=-\dfrac{1}{3}+2=\dfrac{5}{3}\)
Tọa độ điểm \(A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x+2=-2x+1\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(2x+2=\dfrac{-1}{2}x-2\)
\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)
hay x=-10
Thay x=-10 vào (d1), ta được:
\(y=-20+2=-18\)
2: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y_A=0\\-x_A+1=0\end{matrix}\right.\Leftrightarrow A\left(1;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x_B=0\\y_B=-0+1=1\end{matrix}\right.\)
Vậy: B(0;1)
\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{1}{2}\)
3: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=0 và y=-2 vào (d'), ta được:
b-0=-2
hay b=-2
\(b,\text{PT hoành độ giao điểm: }x+2=-2x+1\Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\Leftrightarrow y=\dfrac{5}{3}\Leftrightarrow A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\\ c,\text{Gọi }y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne1\\-\dfrac{1}{3}a+b=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow y=2x+\dfrac{7}{3}\)
Gọi các đồ thị có CT chung là \(ax+b\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)
a: Tọa độ đỉnh là:
x=-(-4)/2=4/2=2 và y=-((-4)^2-4*1*3)/4=-1
Bảng biến thiên là:
b: thay x=0 vào (P), ta được:
y=0^2-4*0+3=3
Vì (d)//y=12x+2017 nên a=12
=>y=12x+b
Thay x=0 và y=3 vào (d), ta được:
b+12*0=3
=>b=3