tim cac so tu nhien a,b(a khac 0) thoa man:
\(\frac{1}{a}-\frac{b}{6}=\frac{1}{3}\)
AI GIAI DUOC MINH CHO 30 TICK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow c=\frac{2ab}{a+b}\)
\(\frac{a-c}{c-b}=\frac{a-\frac{2ab}{a+b}}{\frac{2ab}{a+b}-b}=\frac{\frac{a^2+ab-2ab}{a+b}}{\frac{2ab-ab-b^2}{a+b}}=\frac{a^2+ab-2ab}{2ab-ab-b^2}=\frac{a.\left(a-b\right)}{b.\left(a-b\right)}=\frac{a}{b}\)(ĐPCM)
\(\left|2x-27\right|^{2017}+\left(3y+10\right)^{2012}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)(làm tắt nha, có gì bn thêm vào)
câu 2 : | 2x - 27 |\(^{2011}\)+ ( 3y + 10 ) \(^{2012}\)=0
=> \(\left|2x-27\right|^{2011}\)lớn hơn hoặc = 0 (1)
=> \(\left(3y+10\right)^{2012}\)>hoặc = 0(2)
mà (1) + (2) =0
nên => \(\left|2x-27\right|^{2011}=0\)và \(\left(3y+10\right)^{2012}=0\)
\(\left|2x-27\right|^{2011}=0^{2011}\) \(\left(3y+10\right)^{2012}=0^{2012}\)
\(\left|2x-27\right|=0\) 3y + 10 = 0
2x = 27 3y = -10
x = 27 : 2 y = -10 : 3
x = 13,5 y = \(\frac{-10}{3}\)
ta có: a,b,c thuộc n nên;
1:a+1:b+1:c=1
1:(a+b+c)=1
a+b+c=1vìa, b, cthuoocj N, nên a=0 thìb=0vafc=1
hoặc a=1 thì bvafc=0
hoăcj
b=1 thì a,c=0
1/a - b/6 = 1/3
<=> (6 - ab)/6a = 1/3
<=> 18 - 3ab = 6a
<=> 6a + 3ab = 18
<=> 2a + ab = 6
<=> a(2 + b) = 1 . 6 = 6 . 1 = 2 . 3 = 3 . 2
TH1 a = 1 và 2 + b = 6
<=> a = 1 (thỏa) và b = 4 (thỏa)
TH2 a = 6 và 2 + b = 1
<=> a = 6 (thỏa) và b = -1 (loại)
TH3 a = 2 và b + 2 = 3
<=> a = 2 (thỏa) và b = 1 (thỏa)
TH4 a = 3 và b + 2 = 2
<=> a = 3 (thỏa) và b = 0 (thỏa)
Vậy (a ; b) = {(1 ; 4) ; (2 ; 1) ; (3 ; 0)}
Ta có : \(\frac{1}{a}-\frac{b}{6}=\frac{1}{3}\)
\(\frac{1}{a}-\frac{b}{6}=\frac{2}{6}\)
\(\frac{1}{a}=\frac{b+2}{6}\)
a . ( b + 2 ) = 1 . 6
a . ( b + 2 ) = 6
Ta có bẳng sau :
Vậy các cặp giá trị a,b thỏa mãn là : { -6;-3 } ; { -3 ; -4 } ; { -2 ; -5 } ; { -1 ; -8 } ; { 1 ; 4 } ; { 2 ; 1 } ; { 3 ; 0 } ; { 6 ; 1 }