xét 2 số thực dương a và b sao cho \(^{a^2+b^2\le2}\)
chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\)
ae ai bt tl giúp tôi nha tôi đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\ge a^2+b^2\ge2ab\Rightarrow ab\le1\)
Ta có:
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}=\frac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}-\frac{2}{1+ab}\)
\(=\frac{\left(ab+1\right)\left(a^2+b^2+2\right)-2a^2b^2-a^2-b^2-2}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}=\frac{ab\left(a^2+b^2\right)-2a^2b^2+2ab-a^2-b^2}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}\)
\(=\frac{ab\left(a^2+b^2-2ab\right)-\left(a-b\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}=\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\le0;\forall ab\le1\)
\(\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\)
Dấu "=" xảy ra khi \(a=b\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng phân thức, ta được: \(VT=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\) \(=\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)
Ta cần chứng minh \(\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\ge1\)hay \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Đây là bất đẳng thức quen thuộc có nhiều cách chứng minh:
** Cách 1: Áp dụng AM - GM, ta được: \(a^3+a^3+b^3\ge3a^2b\); \(b^3+b^3+c^3\ge3b^2c\); \(c^3+c^3+a^3\ge3c^2a\)
Cộng từng vế ba bất đẳng thức trên
** Cách 2: Giả sử \(a\le b\le c\)
Có: \(a^3+b^3+c^3=a^2b+b^2c+c^2a+\left(c^2-a^2\right)\left(b-a\right)+\left(c^2-b^2\right)\left(c-b\right)\ge a^2b+b^2c+c^2a\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\).
Or the following SOS:
* Hoặc mạnh hơn với a,b,c thực thỏa mãn \(a+b\ge0,b+c\ge0,c+a\ge0\)
\(a^3+b^3+c^3-a^2b-b^2c-c^2a\)
\(=\frac{\left(a^2+b^2-2c^2\right)^2+3\left(a^2-b^2\right)^2+\Sigma_{cyc}4\left(a+b\right)\left(c+a\right)\left(a-b\right)^2}{8\left(a+b+c\right)}\ge0\)
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m
\(1)\) \(\frac{1}{a^3+5}+\frac{1}{b^3+5}\le\frac{1}{3a+3}+\frac{1}{3b+3}=\frac{1}{3}\left(\frac{1}{a+1}+\frac{1}{b+1}\right)=\frac{1}{3}\left[\frac{a+b+2}{\left(a+1\right)\left(b+1\right)}\right]\)
\(=\frac{1}{3}\left(\frac{ab+a+b+1}{ab+a+b+1}-\frac{ab-1}{ab+a+b+1}\right)=\frac{1}{3}\left(1-\frac{0}{ab+a+b+1}\right)=\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}ab=1\\a^3=1\\b^3=1\end{cases}\Leftrightarrow a=b=1}\)
2) bđt \(\Leftrightarrow\)\(\left(a-b\right)^2\left(\frac{1}{a}+\frac{1}{b}\right)+\left(a+b-2\right)\left[\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\frac{7}{2}\right]\ge0\) (1)
(1) đúng do \(a+b\ge2\sqrt{ab}=2\)\(\Leftrightarrow\)\(a+b-2\ge0\)
Dấu "=" xảy ra khi a=b=1
Ta co:
\(VT=\Sigma_{cyc}\frac{a}{ca+1}=\Sigma_{cyc}\frac{a}{ca+abc}=\Sigma_{cyc}\frac{1}{c+bc}\)
Xet
\(\Sigma_{cyc}\frac{1}{c+bc}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{c}+\frac{1}{bc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\left(ab+bc+ca+a+b+c\right)\)
bdt can chung minh thanh
\(ab+bc+ca+a+b+c\le2\left(a^2+b^2+c^2\right)\)
Ta lai co:
\(a^2+b^2+c^2\ge ab+bc+ca\)
Gio ta can chung minh:
\(a^2+b^2+c^2\ge a+b+c\)
Ta co hai danh gia:
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\le\frac{\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\Rightarrow a^2+b^2+c^2\ge3\)
Suy ra can chung minh:
\(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2-3\right)\ge0\) (đúng)
Dau '=' xay ra khi \(a=b=c=1\)
mn giup voi minh can gap lam
Vũ Minh TuấnBăng Băng 2k6Nguyễn Việt LâmPhạm Lan HươngNguyễn Huy Tú Nguyễn Thị Thùy TrâmNo choice teentthbảo phạmHo Nhat Minh
\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế với vế:
\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)
Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)
Dấu BĐT ngược 1 chút \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Xét hiệu 2 vế của BĐT
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}=\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\)
\(=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\ge0\)
=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{2}{1+ab}\)
Dấu "=" xảy ra <=> a=b=1
Bài này chắc dùng phương pháp hạ bậc + chọn điểm rơi. :v
Lời giải:
Dự đoán dấu "=" xảy ra tại a = b = 1
Ta có: \(1+a^2\ge2a;1+b^2\ge2b\) (cô si)
Suy ra \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{1}{2a}+\frac{1}{2b}\) (1)
Áp dụng BĐT Am-Gm (Cô si),ta có: \(ab\le\frac{a^2+b^2}{2}\)
Lại có: \(\frac{2}{1+ab}\ge\frac{2}{1+\frac{a^2+b^2}{2}}\ge\frac{2}{1+\frac{2}{2}}=1\) (2)
Ta sẽ c/m: \(\frac{1}{2a}+\frac{1}{2b}\le1\Leftrightarrow\frac{1}{a}+\frac{1}{b}\le2\)
Chứng minh tiếp đi:v,bí r:v
: ở đâu có nhãn xanh thế tth?