K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

A B C Q P I H K D L M N G J S T R E O

+) Gọi M,N lần lượt là hình chiếu của P lên AB,AC, L là hình chiếu của I trên MN. Kẻ BG và CJ cùng vuông góc MN.

Nhận xét: Trong \(\Delta\)ABC có đường phân giác trong AE, P và Q trên AE với ^ACQ = ^BCP (gt)

Ta sẽ chứng minh được ^ABP = ^CBQ dựa vào 1 bài toán nổi tiếng ở lớp 7 (Có trong sách NC & PT Toán 7, tập 2)

Tính chất trên là 1 trường hợp đặc biệt của "Đẳng giác". Các bạn có thể tự chứng minh hoặc đọc trong sách :)

Quay trở lại bài toán: Xét \(\Delta\)BMP và \(\Delta\)BIQ: ^PBM = ^QBI (cmt), ^BMP = ^BIQ (=900)

=> \(\Delta\)BMP ~ \(\Delta\)BIQ (g.g) => \(\frac{BI}{BM}=\frac{QI}{PM}\). Tương tự: \(\frac{CI}{CN}=\frac{QI}{PN}\)

Mà PM=PN nên \(\frac{BI}{BM}=\frac{CI}{CN}\)=> \(\frac{BI}{CI}=\frac{BM}{CN}\). Dễ thấy \(\Delta\)MAN cân tại A => ^AMN = ^ANM => ^BMG = ^CNJ

Suy ra: \(\Delta\)BGM ~ \(\Delta\)CJN (g.g) => \(\frac{BM}{CN}=\frac{MG}{NJ}\). Từ đó: \(\frac{BI}{CI}=\frac{MG}{NJ}\)

Để ý hình thang vuông BCJG, nhờ ĐL Thales ta lập được tỉ số: \(\frac{BI}{CI}=\frac{GL}{JL}=\frac{MG}{NJ}=\frac{ML}{NL}=\frac{BM}{CN}\)

+) Kéo dài tia BH,CH cắt MN tại S,T. Có ngay \(\Delta\)THS ~ \(\Delta\)MPN (g.g) (Các cặp cạnh song song)

Ta thấy: L thuộc 2 cạnh MN,ST tương ứng, \(\frac{LM}{LS}=\frac{LN}{LT}\)(Vì \(\Delta\)BLS ~ \(\Delta\)CLT) => \(\Delta\)HLT ~ \(\Delta\)PLN (c.g.c)

=> ^HLT = ^PLN => 900 - ^HLT = 900 - ^PLN => ^HLI = ^PLI  => LI là phân giác ^HLP (1)

+) Gọi R là giao điểm thứ hai của DP với đường tròn (O) => ^PRA= 900 => 5 điểm A,R,N,P,M cùng thuộc 1 đường tròn

=> Tứ giác ARMN nội tiếp => ^MRN = ^BAC = ^BRC, ^RNM = ^RAM = ^RCB nên \(\Delta\)RMN ~ \(\Delta\)RBC (g.g)

Kéo theo \(\Delta\)RMB ~ \(\Delta\)RNC (c.g.c) => \(\frac{BM}{CN}=\frac{RM}{RN}\). Mà \(\frac{BM}{CN}=\frac{LM}{LN}\)(cmt) nên \(\frac{RM}{RN}=\frac{LM}{LN}\)

=> RL là phân giác ^MRN. Chú ý tứ giác RMPN nội tiếp có ^PMN = ^PNM => RP là phân giác ^MRN

Dẫn đến RL trùng với RP hay R,L,P thẳng hàng. Lại có: R,P,K thẳng hàng nên L,P,K thẳng hàng (2)

+) Từ (1) và (2) suy ra: LI là phân giác ^HLK. Mà KH vuông góc LI (Quan hệ song song vuông góc)

Nên \(\Delta\)HKL cân tại L hay H và K đối xứng nhau qua IL. Từ đó: IH = IK => \(\Delta\)HIK cân tại I (đpcm).

25 tháng 4 2018

A B C H L F K O I G P D Q

a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC;  AF=AK 

=> \(\Delta\)ACF=\(\Delta\)ACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng) 

Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.

H là trực tâm của tam giác ABC => CH\(\perp\)AB (tại D)

=> ^HCB + ^ABC = 900 (1)

 Lại có AH\(\perp\)BC => ^LHC + ^HCB = 900 (2)

Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 1800

=> ^ABC + ^AHC = 1800. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 1800

Xét tứ giác AHCK có: ^AKC + ^AHC =1800 => Tứ giác AHCK nội tiếp đường tròn (đpcm).

b) AO cắt GI tại Q

Gọi giao điểm của AO và (O) là P = >^ACP=900 => ^CAP+^CPA=900 (*)

Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC 

Mà ^ABC+^AHC=1800 => ^CPA+^AHC=1800 (3).

Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI

Lại có \(\Delta\)ACF=\(\Delta\)ACK => ^FAC=^KAC hay ^KAI=^GAI  => ^GAI=^CHI

Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn

=> ^AIG+^AHG=1800 hay ^AIG + ^AHC=1800 (4)

Từ (3) và (4) => ^AIG=^CPA (**)

Từ (*) và (**) => ^CAP+^AIG=900 hay ^IAQ+^AIQ=900 => \(\Delta\)AIQ vuông tại Q

Vậy AO vuông góc với GI (đpcm).

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
30 tháng 5 2018

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

15 tháng 4 2020

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

21 tháng 3 2018

Từng bài 1 thôi bạn!

A B C J O N K H M

vẽ trên đt thông cảm!

Do đường tròn ngoại tiếp tam giác ABC có tâm là O

Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)

Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\)

Mà AK là phân giác của \(\widehat{BAC}\)

=> AK là phân giác 

\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)

Theo bổ đề trên ta có tứ giác ANMO là hình bình hành

=> HK//AO

=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)

Hay tam giác NAK cân tại N mà N là trung điểm AH

=> AN=NH=NK

=> \(\Delta AHK\)vuông tại K

5 tháng 2 2020

Em kiểm tra lại đề bài . Gọi P, Q là hình chiếu của K trên BC và gì nữa vậy?

13 tháng 7 2020

Gọi N là giao điểm của PQ và AH, gọi M là giao điểm của AH với (O). Khi đó dễ thấy tam giác PHK cân. Do AH//KP nên tứ giác KPMN là hình thang.

Lại có BPKQ nội tiếp nên suy ra được \(\widehat{QBK}=\widehat{ABK}=\widehat{ AMK}=\widehat{QPK}\)nên tứ giác KPMN nội tiếp. Do đó KPMN là hình thang cân. Do đó \(\widehat{PMH}=\widehat{PHM}=\widehat{KNM}\)nên KN//HP.

Do vậy tứ giác HPKN là hình bình hành. Từ đó ta có điều phải chứng minh.

1: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

2: ΔOAB cân tại O

mà OM là đường cao

nên M là trung điểm của AB

ΔOAC cân tại O

mà ON là đường cao

nên N là trung điểm của AC

=>NM là đừog trung bình

=>MN//BC

=>MN//AE

=>AMNE là hình thang cân

=>AM=EN; AN=EM

ΔAHB vuông tại H có HM là trung tuyến

nên HM=AB/2=MA=MB

ΔHAC vuông tại H có HN là trung tuyến

nên HN=AN=CN=AC/2

=>HM=EN; HN=EM

=>HMEN là hình bbình hành

=>K làtrung điểm của MN

=>IK vuông góc MN

=>IK vuông góc BC

3: goc MDE+gó MDH=180 độ

=>góc MDE=góc MBH

=>BMDH nội tiếp

=>góc MDB=góc MHB=góc MBH

=>góc MDB=góc MDE

=>DM là phân giác của góc BDE

1 tháng 5

ohotại sao phải đi cm M,N lần lượt là trung điểm của AB,AC trg khi nó có sẵn trg đề bài?