cho tam giác ABC cân tạ A,Lấy 1 điểm D thuộc AB ;điểm E thuộc AC sao cho AD=AE
a, C/m : BE =CD
b, Gọi K giao điểm của BE và CD.C/m tam giác KBC cân
c,C/m : AK là phân giác của góc A
d,Kéo dài AK cắt BC tại H cho AB=5cm ;BC=6 cm.Tính độ dài AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`
Có `Delta ABC ` cân tại `A(GT)=>AB=AC`
Xét `Delta ADB` và `Delta AEC` có:
`{:(AB=AC(cmt)),(hat(A)-chung),(AD=AE(GT)):}}`
`=>Delta ADB=Delta AEC(c.g.c)(đpcm)`
`b)`
Có `Delta ABC` cân tại `A=>hat(ABC)=hat(ACB)`
`=>hat(EBC)=hat(DCB)`
mà `hat(B_1)=hat(C_1)(Delta ADB=Delta AEC)`
`hat(B_1)+hat(B_2)=hat(EBC)`
`hat(C_1)+hat(C_2)=hat(DCB)`
nên `hat(B_2)=hat(C_2)`
`=>Delta IBC` cân tại `I`
`c)`
Có `AE=AD(GT)=>Delta AED` cân tại `A`
`=>hat(E_1)=(180^0-hat(A))/2(1)`
`Delta ABC` cân tại `A(GT)=>hat(ABC)=(180^0-hat(A))/2(2)`
Từ `(1)` và `(2)=>hat(E_1)=hat(ABC)`
mà `2` góc này ở vị trí đ/vị
nên `ED////BC(đpcm)`
1:
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
b: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
a) Xét ΔABD và ΔACE có:
AB=ACAB=AC (do ΔABC cân đỉnh A)
ˆA^ : góc chung
AD=AE (giả thiết)
⇒ΔABD=ΔACE (c.g.c)
⇒DB=EC (hai cạnh tương ứng)
b) ΔABD=ΔACE⇒ˆB1=ˆC1 (hai góc tương ứng)
Mà ˆABC=ˆACB (do ΔABC cân đỉnh A)
⇒ˆABC−ˆB1=ˆACB−ˆC1
⇒ˆOBC=ˆOCB
⇒ΔOBC cân đỉnh O (đpcm)
các bn giúp mk vs mk cần gấp nha
hình tự vẽ
a,Xét \(\Delta AEB\)và \(\Delta ADC\)có
\(AE=AD\left(gt\right)\)
\(\widehat{A}\): chung
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta AEB=\Delta ADC\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(2 cạnh tương ứng)
b,\(\Delta AEB=\Delta ADC\left(cmt\right)\Rightarrow\widehat{ABE}=\widehat{ACD}\)(2 góc tương ứng)
mà \(\widehat{ABC}=\widehat{ACB}\left(\Delta ABCcân\right)\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}\Rightarrow\Delta KBC\)cân
c;Xét \(\Delta AKB\)và \(\Delta AKC\)có:
\(AB=AC\left(gt\right)\)
\(AK:chung\)
\(KB=KC\left(\Delta KBCcân\right)\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.c.c\right)\Rightarrow\widehat{KAB}=\widehat{KAC}\)(2 góc tương ứng)
\(\Rightarrow AK\)là tia phân giác của góc A