Tìm số nguyên n, biết
a,-22 chia hết cho n
b,-16 chia hết cho (n - 1)
c,7n chia hết cho 3
d,n + 19 chia hết cho 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 7n chia hết cho 3
mà 7 không chia hết cho 3
nên \(n⋮3\)
=>\(n=3k;k\in Z\)
b: \(-22⋮n\)
=>\(n\inƯ\left(-22\right)\)
=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
c: \(-16⋮n-1\)
=>\(n-1\inƯ\left(-16\right)\)
=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)
d: \(n+19⋮18\)
=>\(n+1+18⋮18\)
=>\(n+1⋮18\)
=>\(n+1=18k\left(k\in Z\right)\)
=>\(n=18k-1\left(k\in Z\right)\)
a) Gọi ƯCLN (n.(n+1)/2,2n+3= n
=> n+ 3 : 7
2n+ 3 chia hết cho n
=> 2 n. n+3 =7 : 3
=>3n^3 +3n : hết cho n
3n + 1 =n + 7
Nếu thế 3n + 7 ^3
n= -3 + 7n
Vậy n = 21
Một số tự nhiên chia hết cho n và 3
P.s: Tương tự và ko chắc :>
bài này bạn đăng lần trước rồi mà
bạn có thể vô lại để xem lại bài nhé
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
+) \(3\left(n+1\right)+11⋮n+3\)
\(11⋮n+3\)
\(n+3\inƯ\left(11\right)=\left\{1;11\right\}\)
\(n=8\)
+) \(3n+16⋮n+4\)
\(3\left(n+4\right)+4⋮n+4\)
\(4⋮n+4\)
\(n+4\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n=0\)
+) \(28-7n⋮n+3\)
\(49-7\left(n+3\right)⋮n+3\)
\(49⋮n+3\)
\(n+3\inƯ\left(49\right)=\left\{1;7;49\right\}\)
\(n\in\left\{4;46\right\}\)
để \(7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
ta có bảng:
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
vì \(n\inℕ\)
=>\(n\in\left\{4\right\}\)
b)
\(18⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm9;\pm18\right\}\)
ta có bảng
2n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 9 | -9 | 18 | -18 | |
n | 0 | -1 | \(\frac{1}{2}\) | \(\frac{-3}{2}\) | 1 | -2 | \(\frac{3}{2}\) | \(\frac{-5}{2}\) | \(\frac{5}{2}\) | \(\frac{-7}{2}\) | 4 | -5 | \(\frac{17}{2}\) | \(\frac{-19}{2}\) |
mà \(x\inℕ\)
\(\Rightarrow x\in\left\{0;4;1\right\}\)