1) Cho hình chử nhật ABCD ( AB//CD) . Biet AB=AD+BC = 10cm, CD= 4cm. Tính diện tích ABCD?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
kẻ bk ⊥ dc ag ⊥ dc
abcd là ht cân
suy ra kc +dg+gk=dc
2kc +ab =dc
kc= dc -ab trên 2 = 10-4 trên 2=3 cm
bk mũ 2 = bc mũ 2 - kc mũ 2 = 5 mũ 2 - 3 mũ 2 =4cm
ta có ih song song kb
di = ib
suy ra ih là đường tb
suy ra ih =1 phần 2 kb = 1 phần 2 nhân 4 =2 cm
Ta áp dụng công thức Brahmagupta để tính
\(s=\frac{\sqrt{\left(AB^2+CD^2+BD^2+AC^2\right)+8\cdot AB\cdot CD\cdot BD\cdot AC-2\left(AB^4+CD^4+BD^4+AC^4\right)}}{4}\)
A) Thay số vào ta đc \(S=6\sqrt{55}\approx44,4972\left(cm^2\right)\)
b) \(S\approx244,1639\left(cm^2\right)\)
hok tốt ...
Công thức Brahmagupta là công thức tính diện tích của một tứ giác nội tiếp (tứ giác mà có thể vẽ một đường tròn đi qua bốn đỉnh của nó) mà hình thang ko có đường tròn nào đi qua đủ bốn đỉnh của nó nên công thức này ko được áp dụng vào bài này
ta có tam giác ADH vuông tại H
=> AH^2+HD^2=AD^2
=>HD^2=AD^2-AH^2
=5^2-4^2
=9
=>HD=3 cm
kẻ BK vuông góc với CD
=>ABKH là hình chữ nhật
=>AH=BK=4cm
tam giác BKC vuông tại K
=>BK^2+KC^2=BC^2
=>KC^2=BC^2-BK^2
=80-16
=64
=>KC=8 (cm)
lại có DH+HK+KC=20
=>HK=20-3-8=9 (cm)
=>AB+HK=9 cm
ta có chu vi hình thang ABCD là AB+BC+CD+DA=9+√80+20+5=34+√80(cm)
Kẻ AH ⊥ DC tại H ; BK ⊥ DC tại K.
=> AH // BK
Xét t/g AHD vuông tại H và t/g BKC vuông tại K có:
AD = BC (do ABCD là htc)
\(\widehat{D}=\widehat{C}\)(do ABCD là htc)
=> t/g AHD = t/g BKC (ch-gn)
=> HD = KC ; AH = KB
Mà AH // BK
=> AHKB là hình thang
Lại có \(\widehat{AHK}=90^o\)
=> AHKB là hình chữ nhật
=> HK = AB = 10cm
Có
DH+HK+KC = DC
=> 2CK + 10 = 16 (cm)
=> CK = 3 (cm) Áp dụng đ/l Pythagoras vào t/g BKC vuông tại K có
\(BK^2+CK^2=BC^2\)
=> \(BK^2+3^2=5^2\)
=> BK = 4 (cm)
Có
\(S_{ABCD}=\dfrac{1}{2}.BK.\left(AB+CD\right)\)
\(=\dfrac{1}{2}.4.\left(10+16\right)=2.26=52\)cm2
Không chắc lắm :((
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
Vô lý
Ta có AB=CD=4cm mà sao AB=AD+BC=10cm???