K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Đáp án D

Đặt t = x 2 ⇒ t ≥ 0.  Phương trình đã cho trở thành  t 2 − 2 t − m = 0    *

Để phương trình đã cho có 4 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt

⇔ Δ ' = 1 + m > 0 S = 2 > 0 P = − m > 0 ⇔ − 1 < m < 0

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

Nếu $m=-3$ thì PT trở thành: $7x^2-3=0$ có nghiệm $x=\pm \sqrt{\frac{3}{7}}$

-------------------------------------------------------------

Nếu $m\neq -3$Đặt $x^2=t$ thì pt trở thành:

$(m+3)t^2-(2m-1)t-3=0(*)$

1. Để pt ban đầu có 1 nghiệm thì PT $(*)$ có nghiệm $t=0$ và nếu có nghiệm còn lại thì nghiệm đó âm.

Để PT $(*)$ có nghiệm $t=0$ thì: $(m+3).0-(2m-1).0-3=0\Leftrightarrow -3=0$ (vô lý)

Do đó không tồn tại $m$ để pt có 1 nghiệm.

2. Để pt ban đầu có 2 nghiệm phân biệt thì PT $(*)$ có 1 nghiệm dương kép hoặc có 1 nghiệm dương và 1 nghiệm âm.

PT có 1 nghiệm dương, 1 nghiệm âm khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)> 0\\ P=\frac{-3}{m+3}<0\end{matrix}\right.\)

\(\Leftrightarrow m>-3\)

PT có nghiệm kép dương $\Leftrightarrow \Delta (*)=(2m-1)^2+12(m+3)=0\Leftrightarrow 4m^2+8m+37=0$ (vô lý)

Vậy $m>-3$

3.

PT ban đầu có 4 nghiệm phân biệt khi PT $(*)$ có 2 nghiệm dương phân biệt

Điều này xảy ra khi \(\left\{\begin{matrix} \Delta (*)=(2m-1)^2+12(m+3)>0\\ S=\frac{2m-1}{m+3}>0\\ P=\frac{-3}{m+3}>0\end{matrix}\right.\Leftrightarrow m< -3\)

7 tháng 3 2021

em cảm ơn ạ!

14 tháng 5 2023

Xem lại đề bài đi bạn.

17 tháng 3 2022

ê phải n.nam 9c ko

 

NV
13 tháng 12 2020

\(x^4-1-mx^2+m=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-m\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=m-1\end{matrix}\right.\)

Pt có 4 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ne2\end{matrix}\right.\)

Khi đó ta có: 

\(\left|x_1-x_2\right|=\left|1-\sqrt{m-1}\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}1-\sqrt{m-1}=1\\1-\sqrt{m-1}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=5\end{matrix}\right.\)

Vậy \(m_0=5\)

10 tháng 4 2018

Đáp án D

Đặt t = x 2 , t ≥ 0 . Ta được phương trình: t 2 − 20 t + m − 1 2 = 0 (2).

Phương trình (1) có bốn nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương t 1 , t 2  phân biệt 0 < t 1 < t 2 .

⇔ Δ ' > 0 S > 0 P > 0 ⇔ − m 2 + 2 m + 99 > 0 20 > 0 m − 1 2 > 0 ⇔ − 9 < m < 11 m ≠ 1    ∗ .

Bốn nghiệm của phương trình (1) lập thành cấp số cộng là:  − t 2 , − t 1 , t 1 , t 2 .

Ta có: − t 2 + t 1 = − 2 t 1 − t 1 + t 2 = 2 t 1 ⇔ 3 t 1 = t 2 ⇔ t 2 = 9 t 1 .

Theo định lý Viet, ta có:  t 2 = 9 t 1 t 1 + t 2 = 20 t 1 . t 2 = m − 1 2 ⇔ t 1 = 2 t 2 = 18 m − 1 2 = 36

Suy ra: m = 7  hoặc m = - 5  (thỏa ()).

Vậy tổng tất cả các giá trị m thỏa yêu cầu bài toán là: 7−5=2.

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
20 tháng 1 2022

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

19 tháng 12 2020

Đặt \(x^2=t\left(t\ge0\right)\), phương trình trở thành:

\(t^2-2\left(m+1\right)t+2m+1=0\left(1\right)\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có hai nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2>0\\t_1+t_2=2m+2>0\\t_1t_2=2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)