K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

\(\left(I\right)\left\{{}\begin{matrix}mx+y=7\left(1\right)\\2x-y=-4\left(2\right)\end{matrix}\right.\)

Từ (2) ta được \(y=2x+4\)

Thay \(y=2x+4\) vào (1) ta có:

\(mx+2x+4=7\Leftrightarrow\left(m+2\right)x=3\)

\(x=\dfrac{3}{m+2}\)

P = \(x^2 + y^2\)= \(x^2+(2x+4)^2=x^2+4x^2+16x+16\)

P= \(5x^2+16x+16=5\bigg(x^2+\dfrac{16}{5}x\bigg)+16\)

P= \(5\bigg(x^2+2. \dfrac{8}{5}x+( \dfrac {8}{5})^2 - \big( \dfrac {8}{5} \big)^2\bigg)+16\)

P= \(5\bigg(x+ \dfrac{8}{5}\bigg)^2+16-5. \bigg(\dfrac{8}{5}\bigg)^2=5\bigg( x+ \dfrac{8}{5}\bigg)^2+ \dfrac{16}{5}\) \(\ge\dfrac{16}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\dfrac{8}{5}=0\Leftrightarrow x=\dfrac{-8}{5}\)

\(\dfrac{3}{m+2}=-\dfrac{8}{5}\Rightarrow m=-\dfrac{31}{8}\)

Vậy \(m=-\dfrac{31}{8} \) thì \(P_{min}=\dfrac{16}{5}\)

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

28 tháng 5 2021

\(mx+2y=-1\)

\(\text{Với : }\)\(\left(x,y\right)=\left(3,2\right)\)

\(3m+2\cdot2=-1\)

\(\Leftrightarrow m=\dfrac{-5}{3}\)

28 tháng 5 2021

`(x;y)=(3;2)` là nghiệm của hệ (I) `<=> m.3+2.2=-1 <=> m=-5/3`

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

5 tháng 7 2021

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=3m-my\\mx-y=m^2-2\end{matrix}\right.\)

\(\Rightarrow m\left(3m-my\right)-y=m^2-2\)

\(\Leftrightarrow2m^2+2=y\left(1+m^2\right)\)

\(\Leftrightarrow y=\dfrac{2m^2+2}{1+m^2}=2\)

\(\Rightarrow x=3m-2m=m\)

Có \(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)

\(\Leftrightarrow\left(m-1-\sqrt{3}\right)\left(m-1+\sqrt{3}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\)

Vậy...

5 tháng 7 2021

chỗ chị phải đi hok thêm chưa :((

 

NV
17 tháng 4 2021

Kết hợp điều kiện đề bài và pt thứ 2 của hệ ta được:

\(\left\{{}\begin{matrix}x-y=-6\\2x+y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)

Thế vào pt đầu:

\(m.1+2.7=18\Rightarrow m=4\)

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$