Giải phương trình \(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+...+\dfrac{x-2016}{1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{x+1}{2012}+1+\dfrac{x+2}{2011}+1+\dfrac{x+3}{2010}+1=\dfrac{x-1}{2014}+1+\dfrac{x-2}{2015}+1+\dfrac{x-3}{2016}+1\)
=>x+2013=0
hay x=-2013
\(\dfrac{x+1}{2012}+1+\dfrac{x+2}{2011}+1+\dfrac{x+3}{2010}+1=\dfrac{x-1}{2014}+1+\dfrac{x-2}{2015}+1+\dfrac{x-3}{2016}+1\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2022}+\dfrac{1}{2011}+\dfrac{2}{2010}-\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}\ne0\right)=0\Leftrightarrow x=-2013\)
\(\dfrac{x+1}{2012}+\dfrac{x+2}{2011}+\dfrac{x+3}{2010}=\dfrac{x-1}{2014}+\dfrac{x-2}{2015}+\dfrac{x-3}{2016}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2012}+1\right)+\left(\dfrac{x+2}{2011}+1\right)+\left(\dfrac{x+3}{2010}\right)=\left(\dfrac{x-1}{2014}+1\right)+\left(\dfrac{x-2}{2015}+1\right)+\left(\dfrac{x-3}{2016}+1\right)\)
\(\Leftrightarrow\dfrac{x+2013}{2012}+\dfrac{x+2013}{2011}+\dfrac{x+2013}{2010}-\dfrac{x+2013}{2014}-\dfrac{x+2013}{2015}-\dfrac{x+2013}{2016}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
\(\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}=5\)
\(\Leftrightarrow\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-5=0\)
\(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-1=0\)
\(\Leftrightarrow\dfrac{x-2012}{2012}+\dfrac{x-2012}{2013}+\dfrac{x-2012}{2014}+\dfrac{x-2012}{2015}+\dfrac{x-2012}{2016}=0\)
\(\Leftrightarrow\left(x-12\right).\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x-12=0\)
\(\Leftrightarrow x=12\)
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)
\(\Leftrightarrow\dfrac{x-1}{2016}+\dfrac{x-2}{2015}=\dfrac{x-4}{2013}+\dfrac{x-3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-3}{2014}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2013}+\dfrac{x-2017}{2014}\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}=0\)
\(\Leftrightarrow x-2017.\left(\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
\(\text{Mà }\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2103}\ne0\Rightarrow x-2017=0\)
\(\Leftrightarrow x=2017\) \(\text{Vậy }x=2017\)
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)
\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)
a) Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2014}\right)\left(1-\dfrac{1}{2015}\right)\left(1-\dfrac{1}{2016}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\cdot\dfrac{2015}{2016}\)
\(=\dfrac{1}{2016}\)
b) Ta có: \(\dfrac{x-2}{12}+\dfrac{x-2}{20}+\dfrac{x-2}{30}+\dfrac{x-2}{42}+\dfrac{x-2}{56}+\dfrac{x-2}{72}=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\cdot\dfrac{2}{9}=\dfrac{16}{9}\)
\(\Leftrightarrow x-2=\dfrac{16}{9}:\dfrac{2}{9}=\dfrac{16}{9}\cdot\dfrac{9}{2}=8\)
hay x=10
Vậy: x=10
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Rightarrow\dfrac{x-1}{2017}+\dfrac{x-2}{2016}-\dfrac{x-3}{2015}-\dfrac{x-4}{2014}=0\)
\(\Rightarrow\dfrac{x-1}{2017}-1+\dfrac{x-2}{2016}-1-\dfrac{x-3}{2015}+1-\dfrac{x-4}{2014}+1=0\)
\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)-\left(\dfrac{x-3}{2015}-1\right)-\left(\dfrac{x-4}{2014}-1\right)=0\)
\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Rightarrow x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Để \(x-2018.\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
\(\Rightarrow x-2018=0\)
\(x=2018\)
Ta có :
\(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\) ( trừ 2 vế cho 2 )
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)
\(\Leftrightarrow\)\(\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}-\dfrac{x-2018}{2015}-\dfrac{x-2018}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
Nên \(x-2018=0\)
\(\Rightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
a) \(5x-3=7\)
\(\Leftrightarrow5x=7+3\)
\(\Leftrightarrow5x=10\)
\(\Leftrightarrow x=\dfrac{10}{5}\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-4=0\)
*) \(x+3=0\)
\(x=0-3\)
\(x=-3\)
*) \(x-4=0\)
\(x=0+4\)
\(x=4\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\left|x^2+2014\right|=1\)
\(\Leftrightarrow x^2+2014=1\) hoặc \(x^2+2014=-1\)
*) \(x^2+2014=1\)
\(\Leftrightarrow x^2=1-2014\)
\(\Leftrightarrow x^2=-2013\) (vô lý)
*) \(x^2+2014=-1\)
\(\Leftrightarrow x^2=-1-2014\)
\(\Leftrightarrow x^2=-2015\) (vô lý)
Vậy \(S=\varnothing\)
d) \(\dfrac{2}{x+1}-\dfrac{1}{x-3}=\dfrac{3x-11}{x^2-2x-3}\) (1)
ĐKXĐ: \(x\ne-1;x\ne3\)
\(\left(1\right)\Leftrightarrow2\left(x-3\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-6-x-1=3x-11\)
\(\Leftrightarrow-2x=-11+7\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\) (nhận)
Vậy \(S=\left\{2\right\}\)
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+...+\dfrac{x-2016}{1}=2016\)
\(\Leftrightarrow\dfrac{x-1}{2016}-1+\dfrac{x-2}{2015}-1+\dfrac{x-3}{2014}-1+...+\dfrac{x-2016}{1}-1=0\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}+\dfrac{x-2017}{2014}+...+\dfrac{x-2017}{1}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+...+1\right)=0\)
\(\Leftrightarrow x-2017=0\) (do \(\dfrac{1}{2016}+\dfrac{1}{2015}+...+1\ne0\))
\(\Rightarrow x=2017\)
Phương trình =2016. Mình quên ghi