A= \(\frac{5n+17}{n+3}+\frac{-3n}{n+3}+\frac{2n+9}{n+3}+\frac{-4n-23}{n+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)
Ta có : \(\frac{2n+9}{n+3}+\frac{5n+17}{n+3}-\frac{3n}{n+3}=\frac{2n+9+5n+17-3n}{n+3}\)
\(=\frac{4n+26}{n+3}\)
\(=4+\frac{14}{n+3}\)
Để biểu thức có giá trị nguyên thì \(\frac{14}{n+3}\) có giá trị nguyên \(\Rightarrow\)14 chia hết cho n+3
=>n+3 là ước của 14 là -1;1;-2;2;7;-7;-14;14
-Nếu n+3=-1 thì n=-4,khi đó A=-10 (thỏa mãn)
-Nếu n+3=1 thì n=-2,khi đó A=18 (thỏa mãn)
-Nếu n+3=2 thì n=-1,khi đó A=11 (thỏa mãn)
-Nếu n+3=-2 thì n=-5,khi đó A=-3 (thỏa mãn)
-Nếu n+3=7 thì n=4, khi đó A=6 (thoả mãn)
-Nếu n+3=-7 thì n=-10,khi đó A=2 (thỏa mãn)
-Nếu n+3=14 thì n=11,khi đó A=5 (thỏa mãn)
-Nếu n+3=-14 thì n=-15,khi đó A=3 (thỏa mãn).
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
a)để n+9/n-6 thuộc Z
=>n+9 chia hết n-6
=>n-6+15 chia hết n-6
=>15 chia hết n-6
=>n-6 thuộc {1,-1,3,-3,5,-5,15,-15}
=>n thuộc {7,5,9,3,11,1,21,-9}
b)để 4n+1/2n+3 thuộc Z
=>4n+1 chia hết 2n+3
<=>[2(2n+3)-5] chia hết 2n+3
=>5 chia hết 2n+3
=>2n+3 thuộc {1,-1,5,-5}
=>2n thuộc {-2,-4,2,-8}
=>n thuộc {-1,-2,1,-4}
c,d tương tự
\(A=\frac{5n+17}{n+3}+\frac{-3n}{2+3}+\frac{2n+9}{n+3}+\frac{-4n-23}{n+3}\)
\(=\frac{5n+17-3n+2n+9-4n-23}{n+3}\)
\(=\frac{3}{n+3}\)