K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

có anh ạ

26 tháng 12 2021

\(\left(a+b\right)^{2021}=\sum\limits^{2021}_{k=0}C^k_{2021}.a^{2021-k}.b^k\)

\(\left\{{}\begin{matrix}2021-k=2020\\k=21\end{matrix}\right.\Leftrightarrow k=21\)

Hệ số của \(a^{2000}b^{21}\) là: \(C^{21}_{2021}\)

26 tháng 12 2021

♦ |a| > 1: phương trình (1) vô nghiệm.

    ♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.

Khi đó phương trình (1) có các nghiệm là

                x = α + k2π, k ∈ Z

                và x = π-α + k2π, k ∈ Z.

Nếu α thỏa mãn điều kiện  và sinα = a thì ta viết α = arcsin a.

Khi đó các nghiệm của phương trình (1) là

                x = arcsina + k2π, k ∈ Z

                và x = π - arcsina + k2π, k ∈ Z.

3 tháng 10 2017

SHTQ của \(\left(3x+2\right)^5\) là \(C^k_5\cdot\left(3x\right)^{5-k}\cdot2^k=C^k_5\cdot3^{5-k}\cdot2^k\cdot x^{5-k}\)

Hệ số của số hạng chứa x tương ứng với 5-k=1

=>k=4

=>Hệ số là \(C^4_5\cdot3^{5-4}\cdot2^4=240\)

6 tháng 7 2019

10 tháng 6 2019

Chọn A

Số hạng tổng quát của biểu thức  x - 2 x 2 21 ,   x ≠ 0  khi khai triển theo công thức nhị thức Newton là 

Số hạng không chứa x trong khai triển nhị thức Newton  x - 2 x 2 21 ,   x ≠ 0  là với k thỏa mãn 

21-3k = 0 => k = 7

Vậy số hạng không chứa x trong khai triển nhị thức Newton  x - 2 x 2 21 ,   x ≠ 0 là 

24 tháng 8 2018

Đáp án D

SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)

Số hạng ko chứa x tương ứng với 12-4k=0

=>k=3

=>SH đó là \(C^3_4=4\)

7 tháng 8 2018

Đáp án là C