K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

A B C D E F F' M

Gọi AD là khoảng cách từ A đến EF.

Trên tia đối của tia DC lấy điểm F' sao cho DF' = BE

Ta có : CE + CF + EF = 2a => (a - DF) + (a - BE) + EF = 2a => EF = BE + DF = F'D + DF = FF'

Dễ thấy tam giác ADF' = tam giác ABE (c.g.c) => góc DAF' = BAE , AE = AF'

và tam giác FAF' = tam giác FAE (c.c.c) => góc FAF' = góc FAE

Ta có : Góc BAE + góc EAD = 90 độ  => góc DAF' + góc góc DAE = 90 độ

hay góc EAF' = 90 độ => góc FAE = 1/2 góc EAF' = 1/2.90 độ = 45 độ.

b) Ở câu a đã chứng minh được tam giác AFF' = tam giác AFE nên kocs AFD = góc AFE

Xét tam giác ADF và tam giác AMF có AF là cạnh chung , góc AFD = góc AFE

=> tam giác ADF = tam giác AMF => AD = AM = a không đổi