Có bao nhiêu tiếp tuyến với đồ thị (C): \(y=x^3-3x^2+2\) song song với đường thẳng y=9x-25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
y' = x2 – 4x + 3
Tiếp tuyến của (C) tại M là
D ss với đt y = 3x + 1 khi
Với 2 giá trị của m suy ra 2 tiếp tuyến.
Chọn D.
Ta có: y’ = -3x2 + 6x. Lấy điểm M(xo; yo) ∈ (C).
Tiếp tuyến tại Msong song với đường thẳng y = -9x suy ra y’(xo) = -9
Với xo = -1 ⇒ yo = 2 ta có phương trình tiếp tuyến: y = -9x - 7
Với xo = 3 ⇒ yo = -2 ta có phương trình tiếp tuyến: y = -9x + 25
Vậy có 2 tiếp tuyến thỏa mãn.
- Tập xác định: D = R.
- Đạo hàm: y ' = 3 x 2 - 6 x .
- Đường thẳng d: y = 9x + 100 có hệ số góc k = 9.
- Vì tiếp tuyến song song với đường thẳng d nên k t t = 9 .
- Ta có:
- Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán.
Chọn C
Tiếp tuyến \(y=kx+b\) qua 1 điểm \(A\left(x_0;y_0\right)\) bất kì thuộc (C) có hệ số góc
\(k=f'\left(x_0\right)=3x_0^2-6x_0\)
Để tiếp tuyến song song với \(y=9x-25\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}k=9\\b\ne-25\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_0^2-6x_0=9\\x_0^3-3x_0^2+2\ne25\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\x_0=3\end{matrix}\right.\)
\(\Rightarrow\) có 2 tiếp tuyến thỏa mãn
c ơi t làm ra 1 tiếp tuyến tm thôi