K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: =>x^3-5x^2+x^2-5x+3x-15=0

=>(x-5)(x^2+x+3)=0

=>x-5=0

=>x=5

2: =>x^3+6x^2+12x+35=0

=>x^3+5x^2+x^2+5x+7x+35=0

=>(x+5)(x^2+x+7)=0

=>x+5=0

=>x=-5

3: \(\Leftrightarrow\left(\dfrac{x+43}{57}+1\right)+\left(\dfrac{x+46}{54}+1\right)=\left(\dfrac{x+49}{51}+1\right)+\left(\dfrac{x+52}{48}+1\right)\)

=>x+100=0

=>x=-100

15 tháng 3 2020

\(\frac{43-x}{57}+\frac{46-x}{54}=\frac{49-x}{51}+\frac{52-x}{48}\)

\(\Leftrightarrow\left(\frac{43-x}{57}+1\right)+\left(\frac{46-x}{54}+1\right)=\left(\frac{49-x}{51}+1\right)+\left(\frac{52-x}{48}+1\right)\)

\(\Leftrightarrow\frac{43-x+57}{57}+\frac{46-x+54}{54}=\frac{49-x+51}{51}+\frac{52-x+48}{48}\)

\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}=\frac{100-x}{51}+\frac{100-x}{48}\)

\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}-\left(\frac{100-x}{51}+\frac{100-x}{48}\right)=0\)

\(\Leftrightarrow\left(100-x\right)\left[\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)\right]=0\) (*)

\(\frac{1}{57}< \frac{1}{51},\frac{1}{54}< \frac{1}{48}\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)< \left(\frac{1}{51}+\frac{1}{48}\right)\)

\(\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)< 0\)

Phương trình (*) xảy ra khi: \(100-x=0\Leftrightarrow x=100\)

Vậy phương trình có nghiệm duy nhất là x = 100

9 tháng 2 2021

Ta có : \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{49}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)

\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{49}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)

\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{49}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)

<=> x - 100 = 0

<=> x = 100

Vậy ..

 

 

 

Ta có: \(\dfrac{x-50}{50}+\dfrac{x-51}{49}+\dfrac{x-52}{48}+\dfrac{x-53}{47}+\dfrac{x-200}{25}=0\)

\(\Leftrightarrow\dfrac{x-50}{50}-1+\dfrac{x-51}{49}-1+\dfrac{x-52}{48}-1+\dfrac{x-53}{47}-1+\dfrac{x-200}{25}+4=0\)

\(\Leftrightarrow\dfrac{x-100}{50}+\dfrac{x-100}{49}+\dfrac{x-100}{48}+\dfrac{x-100}{47}+\dfrac{x-100}{25}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}\right)=0\)

mà \(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}>0\)

nên x-100=0

hay x=100

Vậy: S={100}

a. (3x - 1)2 - (x + 3)2 = 0

\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)

\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)

\(\Leftrightarrow4x+2=0\)  hoặc  \(2x-4=0\)

1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)

2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

S=\(\left\{-\dfrac{1}{2};2\right\}\)

 

b. \(x^3=\dfrac{x}{49}\)

\(\Leftrightarrow49x^3=x\)

\(\Leftrightarrow49x^3-x=0\)

\(\Leftrightarrow x\left(49x^2-1\right)=0\)

\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)

\(\Leftrightarrow x=0\) hoặc  \(7x+1=0\) hoặc \(7x-1=0\)

1. x=0

2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)

3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

26 tháng 8 2018

a) \(\dfrac{x+43}{57}+\dfrac{x+46}{54}=\dfrac{x+49}{51}+\dfrac{x+52}{48}\)

\(\left(\dfrac{x+43}{57}+1\right)+\left(\dfrac{x+46}{54}+1\right)=\left(\dfrac{x+49}{51}+1\right)+\left(\dfrac{x+52}{48}\right)\)

\(\dfrac{x+43+57}{57}+\dfrac{x+46+54}{54}-\dfrac{x+49+51}{51}-\dfrac{x+52+48}{48}=0\)

\(\dfrac{x+100}{57}+\dfrac{x+100}{54}-\dfrac{x+100}{51}-\dfrac{x+100}{48}=0\)

\(\left(x+100\right)\left(\dfrac{1}{57}+\dfrac{1}{54}-\dfrac{1}{51}-\dfrac{1}{48}\right)=0\)

\(\dfrac{1}{57}+\dfrac{1}{54}-\dfrac{1}{51}-\dfrac{1}{48}\ne0\)

Nên: \(x+100=0\)

\(x=-100\)

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

AH
Akai Haruma
Giáo viên
11 tháng 12 2017

Bài 1:

Đặt \(\left\{\begin{matrix} 5x+3=a\\ 2x+4=b\end{matrix}\right.\) \(\Rightarrow 3x-1=a-b\)

PT trở thành:

\(a^3-b^3=(a-b)^3\)

\(\Leftrightarrow (a-b)(a^2+ab+b^2)=(a-b)^3\)

\(\Leftrightarrow (a-b)[a^2+ab+b^2-(a^2-2ab+b^2)]=0\)

\(\Leftrightarrow 3ab(a-b)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\b=0\\a=b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{5}\\x=-2\\5x+3=2x+4\Leftrightarrow x=\dfrac{1}{3}\end{matrix}\right.\)

Thử lại thấy đều thỏa mãn

Vậy \(x\in\left\{\frac{-3}{5};-2;\frac{1}{3}\right\}\)

AH
Akai Haruma
Giáo viên
11 tháng 12 2017

Bài 2:

\(\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}=\frac{x-4}{2010}\)

\(\Leftrightarrow \frac{x-1}{2013}-1+\frac{x-2}{2012}-1-\left(\frac{x-3}{2011}-1\right)=\frac{x-4}{2010}-1\)

\(\Leftrightarrow \frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}=\frac{x-2014}{2010}\)

\(\Leftrightarrow (x-2014)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\) (1)

Thấy rằng \(2013> 2011; 2012> 2010\Rightarrow \frac{1}{2013}< \frac{1}{2011}; \frac{1}{2012}< \frac{1}{2010}\)

\(\Rightarrow \frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}< 0\) (2)

Từ (1),(2) suy ra \(x-2014=0\Leftrightarrow x=2014\)

Bài 3:

Đặt \(\left\{\begin{matrix} 2x-5=a\\ x-2=b\end{matrix}\right.\Rightarrow x-3=a-b\)

PT trở thành: \(a^3-b^3=(a-b)^3\)

\(\Leftrightarrow (a-b)(a^2+ab+b^2)-(a-b)(a^2-2ab+b^2)=0\)

\(\Leftrightarrow 3ab(a-b)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\b=0\\a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\\x-3=0\Leftrightarrow x=3\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{5}{2}; 2; 3\right\}\)

27 tháng 8 2023

Ta có : \(B\text{=}4x^2-12x+9\)

\(B\text{=}\left(2x-3\right)^2\)

Với \(x\text{=}\dfrac{1}{2}\)

\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)

\(B\text{=}\left(-2\right)^2\text{=}4\)

Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)

\(A\text{=}10x^2\)

Với \(x\text{=}-\dfrac{1}{5}\)

\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)

27 tháng 8 2023

B = 4x² - 12x + 9

= (2x - 3)²

Tại x = 1/2 ta có:

B = (2.1/2 - 3)²

= (-2)²

= 4

-------------------

A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²

= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36

= 10x²

Tại x = 1/5 ta có:

A = 10.(1/5)²

= 2/5

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

19 tháng 3 2022

chọn A