K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

a: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

Xét (O) có

ΔAFC nội tiêp

AC là đường kính

Do đó: ΔAFC vuông tại F

Xét ΔHBA vuông tại B và ΔHFC vuông tại F có

góc BHA=góc FHC

DO đó: ΔHBA đồng dạng với ΔHFC

=>HB/HF=HA/HC

=>HB*HC=HF*HA

b: Kẻ EG vuông góc với DA

Xet tứ giác EDHA có

ED//HA

EA//HD

Do đó: EDHA là hình bình hành

=>EA=DH

=>ΔEAG=ΔHDB

=>AG=BD=2AB

=>B là trung điểm của AG

=>BG=GD

=>ΔEBD cân tại E

15 tháng 11 2019

cho e hỏi (O,EB) có nghĩa là thuộc đg tròn O BKinh EB hả anh

9 tháng 11 2015

vui lòng viết dấu để mình trả lời

a: Xét (O) có

CM,CA là các tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA 

nên OC vuông góc với MA tại trung điểm của MA

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD vuông góc với MB tại trung điểm của MB

Từ (1)và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính DC

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Lời giải:
Sửa đề theo yêu cầu: \(\overrightarrow{IM}.\overrightarrow{IA}=R^2\)

----------------------

Ta có:

\(\overrightarrow{IM}.\overrightarrow{IA}=R^2\)

\(\Leftrightarrow (\overrightarrow{IA}+\overrightarrow{AM})\overrightarrow{IA}=R^2\)

\(\Leftrightarrow (\overrightarrow{IA})^2+\overrightarrow{AM}.\overrightarrow{IA}=R^2\)

\(\Leftrightarrow R^2+\overrightarrow{AM}.\overrightarrow{IA}=R^2\)

\(\Rightarrow \overrightarrow{AM}.\overrightarrow{IA}=0\). Vậy tích vô hướng của \(\overrightarrow{AM}; \overrightarrow{IA}\) bằng $0$,

nghĩa là \(\overrightarrow{AM}\perp \overrightarrow{IA}\)

Do đó $MA$ là tiếp tuyến của $(I)$

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Bạn xem lại đề

\(IM.IA=R^2\). Mà \(IA=R\) (do $I$ là tâm và $A$ nằm trên đường tròn)

\(\Rightarrow IM=R\)

\(\Rightarrow M\in (I)\)

Khi đó $MA$ là dây cung của $(I)$ chứ không thể là tiếp tuyến.