K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

a. Liệt kê

Bước 1: Nhâp N

Bước 2: i←1; s←0;

Bước 3: Nếu i>N thì in ra S rồi kết thúc

Bước 4: S←S+i;

Bước 5: i←i+1, quay lại bước 3

b. 

Bước 1: Nhâp N

Bước 2: i←1; s←1;

Bước 3: Nếu i>N thì in ra S rồi kết thúc

Bước 4: S←S+i*5;

Bước 5: i←i+1, quay lại bước 3

1 tháng 10 2021

c.

Bước 1: Nhâp N và dãy a1,a2,a3,...,aN

Bước 2: i←1; s←1;

Bước 3: Nếu i>N thì in ra S rồi kết thúc

Bước 4: S←S+1/ai;

Bước 5: i←i+1, quay lại bước 3

d.

Bước 1: Nhâp N,K và dãy a1,a2,a3,...,aN

Bước 2: i←1; d←0;

Bước 3: Nếu i>N thì in ra d rồi kết thúc

Bước 4: Nếu ai<K thì d←d+1;

Bước 5: i←i+1, quay lại bước 3

4 tháng 7 2017

Bài 1:

a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)

= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)

b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)

= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)

4 tháng 7 2017

\(\text{Câu 1 : }\) Tính

\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)

\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)

GV
27 tháng 4 2017

a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)

b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:

\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)

\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)

8 tháng 8 2017

Theo tính chất của dãy tỉ số bằng nha, ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

.................................

\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)

Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)

~ Học tốt ~

22 tháng 3 2018

44^2 =1936

45^2 =2025

phần thừa dư do 2018 không cp : 2018-[1936+(2025-1936-1 )/2] = 38 số

\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45}\)

13 tháng 10 2017

\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}=\dfrac{x_1+x_2+...+x_{n-1}+x_n}{a_1+a_2+...+a_{n-1}+a_n}\)

\(=\dfrac{c}{a_1+a_2+...+a_n}\)

Suy ra:

\(x_1=\dfrac{a_1.c}{a_1+a_2+...+a_n}\)

\(x_2=\dfrac{a_2.c}{a_1+a_2+...+a_n}\)

.........................................

\(x_n=\dfrac{a_n.c}{a_1+a_2+...+a_n}\)