cho S=2.1+2.3+2.32+....+2.32004
a)thu gon S
b)tim so tan cung cua S. tu do suy raS khong phai la so chinh phuong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{S}{2}=3^0+3^1+..+3^{2004};,,,,,3.\frac{S}{2}=3^1+3^2+..+3^{2005}\)
\(\frac{3}{2}S-\frac{S}{2}=S\) Trừ cho nhau các số ở giữ tự triệt tiêu.
\(S=3^{2005}-3^0\)
b) \(3^{2005}=3.9^{1002}=3.81^{501}=3.\left(....1\right)\) tận cùng là: 3
=> S có tận cùng là 2
Theo t/c số chính phương không có số tận cùng =2
số cp tận cùng bằng (0,1,4,5,6,9)
Ta có : S = 2.1 + 2.3 + 2.32 + ...... + 2.32004
=> S = 2.(1 + 3 + 32 + ..... + 32004)
=> 3S = 2.(3 + 32 + 33 + ..... + 32005)
=> 3S - S = 2.(32005 - 1)
=> 2S = 2.(32005 - 1)
=> S = 32005 - 1
S=1+3+32+33+...+330
3S=3+32+33+34+...+331
3S-S=(3+32+33+34+...+331) - (1+3+32+33+...+330)
2S=331-1
S=(331-1):2
= (328.33 - 1):2
= [(34)7.27 - 1]:2
= [(...1)7.27 - 1]:2
= [(....1).27 - 1]:2
= [(...7) - 1]:2
= (...6) : 2
= ...3
Mà số chính phương thường có chữ số tận cùng là 0;1;4;5;6;9 nên S không phải là số chính phương
MINH CHI BIET TIM CHU SO TAN CUNG SORRY NHA]
MINH KO BIET VIET SO MU
Tổng A có 20 số, nhóm 4 số vào 1 nhóm thì vừa hết.
Ta có;
A = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) +......+ (217 + 218 + 219 + 220)
= (2 + 22 + 23 + 24) + 24(2 + 22 + 23 + 24) + ...... + 216(2 + 22 + 23 + 24)
= 30 + 24.30 + ......+ 216.30
= 30(1 + 24 + .......+ 216) = ....0
=> A có chữ số tận cùng là 0.
a,n=1 thì tm
n=2 thì ko tm
n=3 thì tm
n=4 thì ko tm
n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0
Mà 1!+2!+3!+4! = 33
=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương
Vậy n thuộc {1;3}
k mk nha
Tổng của n số tự nhiên lẻ đầu tiên có phải là một số chính phương không? Vì sao?
a) S = 2.1 + 2.3 + 2.32 + ... + 2.32004
= 2.(1+3+32+...+32004)
= 2.\(\frac{3^{2005-1}}{2}\)
= 32005 - 1
b) Nhận thấy : 2005 = 4k + 1
Nên : 32005 = 34k + 1 = 34k.3 = ...1k . 3
Vì ...1k có tận cùng là 1 nên 32005 có tận cùng là 3
=> 32005 - 1 có tận cùng là 2
a) Ta có :
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2004}\)
=> \(S=2.\left(1+3+3^2+...+3^{2004}\right)\)
Đăt \(1+3+3^2+...+3^{2004}\)là A, ta có :
\(3A=3+3^2+3^3+...+3^{2005}\)
=> \(3A-A=3^{2005}-1\)
=> \(A=\frac{3^{2005}-1}{2}\)
Vậy \(A=\frac{3^{2005}-1}{2}\)
=> 2.A = 2 . \(\frac{3^{2005}-1}{2}\)=\(3^{2005}-1\)
b) Ta có : 32005 = (34)501 . 3
= 81501 . 3 = ...1 . 3 = ...3
32005 - 1 = ....3 - 1 = ....2
Vì chữ số tận cùng của S là 2 nên S ko phải là số chính phương.