K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2020

a) Gọi d là ƯC( 7n + 10 ; 5n + 7 ) 

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d

=> 35n + 50 - 35n - 49 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1

=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )

b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d

=> 4n + 8 - 4n - 6 chia hết cho d

=> 2 chia hết cho d

=> d ∈ { 1 ; 2 }

Với d = 2 => \(2n+3⋮̸̸d\)

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1

=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )

25 tháng 11 2018

Lám đc chưa, tớ giải cho

1 tháng 12 2018

Xin lỗi nha máy mình ko viết đc một số dấu ,có gì sai sót  mong mọi người thông cảm và sửa lại giúp mình nha!

1)Gọi ước chung lớn nhất của 2n+1 và 2n+3 là a,với a thuộc tập hợp số tự nhiên

=>2n+1:a và 2n+3:a

=>(2n+3)-(2n+1):a

=>2:a

=>a thuộc tập hợp ước của 2

=>ước của 2=(1;2)

=>a=1;2

Vì 2n:2,với n thuộc tập hợp số tự nhiên,1 /:2

=>a=1

=>(2n+1,2n+3)=1

=>2n+1 và 2n+3 là hai số nguyên tố chùng nhau

CHÚC MỌI NGƯỜI HỌC TỐT NHÉ!

4 tháng 1 2017

Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.

Ta có : 2n + 3 chia hết cho d.

           3n + 5 chia hết cho d.

=> 3( 2n + 3 ) chia hết cho d.

=> 2(3n + 5 ) chia hết cho d.

=> 6n + 9 chia hết cho d.

=> 6n +10 chia hết cho d.

Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.

      = 1 chia hết cho d

=> d thuộc Ư ( 1 )

=> d = 1

Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1

Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.

2 tháng 12 2017

gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)

suy ra  2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d

           3n+5 chia hết cho d }  2(3n+5) chia hế cho d } 6n+10 chia hết cho d

suy ra [(6n+10) -(6n+9) chia hết  cho d

        =[(6n-6n)+(10-9)] chia hết cho d

        =[0+1] chia hết cho d

        =1 chia hết cho d

vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1

8 tháng 7 2017

Gọi ƯCLN (2n+3,3n+4) là d

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)

\(\Rightarrow6n+9-\left(6n+8\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)2n+3 và 3n+4 nguyên tố cùng nhau

12 tháng 7 2017

ban oi tai sao lai lam nhu vay

13 tháng 11 2016

Ta thấy 

3 ; 8 là 2 số nguyên tố cùng nhau

Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .

Các số có ước chung lớn nhất là 1 thì là số nguyên tố . 

13 tháng 11 2016

Ta thấy 

3 ; 8 là 2 số nguyên tố cùng nhau

Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .

Các số có ước chung lớn nhất là 1 thì là số nguyên tố . 

16 tháng 7 2017

Làm rồi\(\infty\)

16 tháng 7 2017

uk.cau nay lau lam r

17 tháng 12 2017

gọi UCLN(6n+5,2n+3) là d

suy ra (6n+5) chia hêt cho d, (2n+3) chia hết cho d

suy ra [(2n+3)-(6n+5)] chia het cho d

suy ra [3.(2n+3)-(6n+5)] chia het cho d

suy ra [(3.2n+3.3)-(6n+5)] chia het cho d

suy ra[(6n+9)-(6n+5)] chia het cho d

suy ra 4 chia het cho d

suy ra d thuoc U(4)

suy ra d thuoc {1;2;4}

vi 6n ko chia het cho 4 va 5 ko chia het cho4 

suy ra (6n+5) ko chia het cho 4

suy ra d ko bang 4

vi 6n chia het cho 2 va 5 ko chia het cho 2

suy ra (6n+5) ko chia het cho 2

suy ra d ko bang 2

do do d=1

suy ra UCLN(6n+5,2n+3)=1

suy ra 6n+5 va 2n+3 nguyen to cung nhau

vay: tu tra loi cai vay nhe, tao chi giup may the thoi

17 tháng 12 2017

Gọi ƯLCN của 6n+5 và 2n+3 là d (d thuộc N sao)

=> 6n+5 và 2n+3 đều chia hết cho d

=> 6n+5 và 3.(2n+3) đều chia hết cho d    hay 6n+5 và 6n+9 đều chia hết cho d

=> 6n+9-(6n+5) chia hết cho d    hay 4 chia hết cho d (1)

Mà 2n+3 lẻ => d lẻ (2)

Từ (1) và (2) => d =1 ( vì d thuộc N sao )

=> ƯCLN của 6n+5 và 2n+3 là 1

=> 6n+5 và 2n+3 là 2 số nguyên tố cùng nhau

k mk nha