MÌNH ĐANG CẦN GẤP BÀI NÀY
TÍNH TỔNG
C=1-2+22-23+24-25+.....+2100
CẢM ƠN CÁC BẠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$22+23-25+27-29+31-33$
$=22+(23-25)+(27-29)+(31-33)$
$=22+(-2)+(-2)+(-2)=22+(-2).3=22-6=16$
So sánh : 2^33 và 3^22
2^33 = (2^3)^11 = 8^11
3^22 = (3^2)^11 9^11
Vì 8^11 < 9^11
Vậy : 2^33 < 3^22
Ta có : 2\(^{23}\)= .2\(^{20}\) . 2\(^3\) = ( 2\(^4\))\(^5\). 2\(^3\)= 16\(^5\) . 2\(^3\)
3\(^{22}\) = 3\(^{20}\) . 2\(^2\)= ( 3\(^4\))\(^5\).2\(^2\)= 81\(^5\). 2\(^2\)
Vì 16\(^5\)< 81\(^5\)nên 2\(^{23}\)< 3\(^{22}\)
A = 47 x 36 + 64 x 47 + 15
A= 47 x ( 64 + 36 ) + 15 = 47 x 100 + 15 = 4700 + 15 = 4715
vậy A= 4715
B= 27+35 + 65 + 73+ 75
B= (27+ 73) + ( 35 + 65) +75
B= 100 +100 +75 = 275
vậy B= 275
C= 37 +37 x 15 +37 x 84
C= 37 x ( 1+15 +84 )= 37 x 100 = 3700
vậy C= 3700
D = 1/20x21 + 1/21x22 + 1/22x23 + 1/23x24
D= 1/20 - 1/21 + 1/21 - 1/22 + 1/22 - 1/23 + 1/23 - 1/24
D= 1/20 -1/24 = 1/120 vậy D= 1/120
E= 1/1x2 + 1/2x3 + ...... + 1/49x50
E= 1/1 - 1/2 + 1/2 - 1/3 +...... + 1/49 - 1/50
E = 1 - 1/50 = 49/50
vậy E= 49/50
CHÚC HOK TOT
a: \(-\dfrac{11}{33}< 0< \dfrac{25}{16}\)
b: \(-\dfrac{17}{23}=\dfrac{-171717}{232323}\)
Bài 2:
\(a.\left(y+3,02\right):1,5=6,9\times0,3.\\ \Leftrightarrow\left(y+3,02\right):1,5=2,07.\\ \Leftrightarrow y+3,02=3,105.\\ \Leftrightarrow y=0,085.\)
\(b.16,15:\left(y\times19\right)=17.\\ \Leftrightarrow y\times19=0,95.\\ \Leftrightarrow y=0,05.\)
\(c.0,5\times y:5=10\times0,2.\\ \Leftrightarrow0,5\times y:5=2.\\ \Leftrightarrow0,5\times y=10.\\ \Leftrightarrow y=20.\)
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)
\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)
Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)