cho tam giac ABC can tai A co 2 duong cao BH va CK
a,cmr:tam giac AKH can
b,KH//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=180^o\) ( góc bẹt )
\(\Rightarrow\widehat{A_1}+\widehat{A_3}=90^o\left(\widehat{A_2}=90^o\right)\) (1)
Trong \(\Delta CAK\left(\widehat{K_1}=90^o\right):\widehat{A_3}+\widehat{C_1}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A_1}=\widehat{C_1}\)
Xét \(\Delta HAB,\Delta KCA\) có:
\(\widehat{A_1}=\widehat{C_1}\left(cmt\right)\)
\(\widehat{H_1}=\widehat{K_1}=90^o\)
AB = AC ( gt )
\(\Rightarrow\Delta HAB=\Delta KCA\) ( c.huyền - g.nhọn )
\(\Rightarrow BH=AK;HA=CK\) ( các cạnh t/ứng )
Áp dụng định lí Py-ta-go vào \(\Delta ACK\left(\widehat{K_1}=90^o\right)\) ta có:
\(AK^2+CK^2=AC^2\)
\(\Rightarrow BH^2+CK^2=AC^2\)
\(\Rightarrow BH^2+CK^2\) có giá trị không đổi ( đpcm )
Vậy...
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Tam giác ABE và tam giác HBE có góc A = góc H = 90độ, góc ABE = góc HBE, cạnh huyền BE chung nên hai tam giác đó bằng nhau.
từ hai tam giác trên bằng nhau suy ra BA = BH, EA = EH suy ra B và E cùng thuộc đường trung trực của AH suy ra BE là đường trung trực của AH.
c/m hai tam giác vuông AKE và HCE bằng nhau theo trường hợp góc cạnh góc. suy ra EK = EC.
tam giác AKE vuông tại A nên AE<EK mà EK = EC nên AE < EC
tích nha
GT | Cho \(\Delta\)ABC cân tại A. Qua B và C lần lượt kẻ BH, CK vuông góc với AC, AB tại H và K. Hai đường này cắt nhau tại I. |
KL | CMR : AI là tia phân giác góc A. |
Có : \(\Delta\)ABC cân tại A.
\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Leftrightarrow\widehat{ABH}+\widehat{HBC}=\widehat{ACK}+\widehat{KCB}\)(1)
Xét \(\Delta\)BHC và \(\Delta\)CKB có :
\(\widehat{BHC}=\widehat{CKB}=90^0\)
\(\Leftrightarrow\widehat{KCB}+\widehat{KBC}=\widehat{HBC}+\widehat{HCB}=90^0\)
Mà : \(\widehat{KBC}=\widehat{HCB}\)
\(\Leftrightarrow\widehat{KCB}=\widehat{HBC}\)
+) \(\Leftrightarrow\Delta\)IBC cân tại I +) Từ (1)
\(\Leftrightarrow IB=IC\)(2) \(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)(3)
Lại có do \(\Delta\)ABC cân tại A
\(\Leftrightarrow AB=AC\) (4)
Từ (2);(3) và (4) \(\Rightarrow\Delta\)ABI = \(\Delta\)ACI (cgc)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\left(cgtu\right)\)
\(\Leftrightarrow\)AI là phân giác góc A ( đpcm )