Chứng tỏ rằng abcd chia hết 999. thì ab +cd chia hết cho 99 và ngược lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>ĐPCM
Ngược lại:
Ta có: ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 99
=>ĐPCM
Ta có: abcd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
Vì 99 . ab chia hết cho 99 \(\Rightarrow\)ab + cd chia hết cho 99 ( ĐPCM )
Ngược lại:
Ta có: ab + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)abcd chia hết cho 99 ( ĐPCM )
Bài này tương tự bài lúc nãy
Chỉ thay đổi cách diễn đạt thôi
Ủng hộ nha
abcd chia hết cho 99. Suy ra abcd chia hết cho 11 và 9.
Để abcd chia hết cho 11. Suy ra (a+c)-(b+d)=11;0hay (b+d)-(a+c)=11;0.(1)
Để abcd chia hết cho 9. Suy ra a+b+c+d chia hết cho 9.(2)
Từ (2) suy ra ab+cd chia hết cho 9 (vì a+b+c+d chia hết cho 9)
Từ (1) suy ra ab+cd chia hết cho 11 vì ab=10xa+b; cd=10xc+d suy ra ab+cd=10xa+b+10xc+d=10x(a+c)+(b+d)
Nếu (a+c)-(b+d)=0 hay (b+d)-(a+c)=0
Suy ra b+d=a+c suy ra ab+cd=11(a+c)=11(b+d)
Nếu (a+c)-(b+d)=11 hay (b+d)-(a+c)=11
Suy ra ab+cd=10x(a+c)+(a+c)+11 chia hết cho 11 ab+cd=10x(11+b+d)+(b+d)=11x10+11x(b+d) chia hết cho 11
Vậy abcd chia hết cho 99 Suy ra ab+cd chia hết cho 99(và ngược lại)
abcd chia hết cho 99 thì ab + cd chia hết cho 99
abcd=ab.100+ cd =ab.99+ab +cd=ab.99+(ab +cd)
vì 99 chia hết cho 99 => a.99 chia hết cho 99
mà theo đề bài abcd chia hết cho 99 => (ab+cd) phải chia hết cho 99 (tính chất chia hết của 1 tổng cho 1 số)
vậy abcd chia hết cho 99 thì ab + cd chia hết cho 99
* c/ minh ý ngược lại: ab + cd chia hết cho 99 thì abcd chia hết cho 99
ta có ab + cd chia hết cho 99 và ab.99 chia hết cho 99 (vì 99 chia hết cho 99)
=> (ab+cd +ab.99 ) chia hết cho 99 ( t/chất chia hết của 1 tổng cho 1 số)
mà ab+cd +ab.99 =ab+ab.99 +cd=ab.(99+1)+cd=ab.100+cd=abcd
vậy abcd chia hết cho 99abcd chia hết cho 99 thì ab + cd chia hết cho 99
abcd= ab.100+ cd =ab.99+ab +cd=ab.99+(ab +cd)
vì 99 chia hết cho 99 => a.99 chia hết cho 99
mà theo đề bài abcd chia hết cho 99 => (ab+cd) phải chia hết cho 99 (tính chất chia hết của 1 tổng cho 1 số)
vậy abcd chia hết cho 99 thì ab + cd chia hết cho 99
* c/ minh ý ngược lại: ab + cd chia hết cho 99 thì abcd chia hết cho 99
ta có ab + cd chia hết cho 99 và ab.99 chia hết cho 99 (vì 99 chia hết cho 99)
=> (ab+cd +ab.99 ) chia hết cho 99 ( t/chất chia hết của 1 tổng cho 1 số)
mà ab+cd +ab.99 =ab+ab.99 +cd=ab.(99+1)+cd=ab.100+cd=abcd
vậy abcd chia hết cho 99
abcd = ab x 100 + cd = ab x 101 - ab + cd
Vì abcd và ab x 101 chia hết cho 101 nên - ab + cd chia hết cho 101 \(\Rightarrow\)- ( ab - cd ) chia hết cho 101 \(\Rightarrow\)ab - cd chia hết cho 101 ( ĐPCM )
Ngược lại, ab - cd chia hết cho 101 nên - ab + cd chia hết cho 101. Mà ab x 101 chia hết nên abcd chia hết cho 101 ( ĐPCM )
bạn vô câu tương tự tham khảo