K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

số các số hạng là:

    (101-1)/1+1=101(số)

tổng các số là:

     (101+1)*101/2=5151

              Đáp số: 5151

5 tháng 1 2018

a)

Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau. 
(+1+2-3-4)=-4 
(+5+6-7-8)=-4 
(+9+10-11-12)=-4 
... 
(+97+98-99-100)=-4 
Vậy cho tới số 100, chia được số nhóm là: 
100:4=25 nhóm như vậy, 
Suy ra, tổng từ +1 đến -100 là: 
25.(-4)=-100 
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu? 

Theo như trên, thì 
S=(-100)+101+102=103 

Đáp số: 
S=103

b)

Ta thấy : 3 - 1= 2 
5 - 3 = 2 
7 - 5 = 2 
...... 
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng). 
Ta sắp xếp thành các cặp số ta có số cặp số là: 
50:2=25( cặp số ) 
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101

= - 50+101

= 51

24 tháng 1 2016

x+(x+1)+(x+2)+...+100+101=101

x+(x+1)+(x+2)+....+100=0  (1)

=>[(x+100).n]:2=0

gọi n là số số hạng ở vế trái của (1)

mà n khác 0=>x+100=0

=>x=-100

vậy x=-100

24 tháng 1 2016

x=-100 

 

14 tháng 3 2017

Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=3\cdot\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow3\cdot A=3\cdot\frac{1}{3}+3\cdot\frac{2}{3^2}+3\cdot\frac{3}{3^3}+...+3\cdot\frac{100}{3^{100}}+3\cdot\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(\Rightarrow3\cdot A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{101}{3^{100}}-\frac{100}{3^{100}}\right)-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
Khi đặt \(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\) thì ta sẽ có 2 điều:
- Điều 1: Khi đó:
\(2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=S-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A< S\)    ( 1 )
Điều 2: Khi đó:
\(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3\cdot\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow3\cdot S=3\cdot1+3\cdot\frac{1}{3}+3\cdot\frac{1}{3^2}+...+3\cdot\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3\cdot S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{99}}-\frac{1}{3^{99}}\right)-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+0+0+0+...+0-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3-\frac{1}{3^{100}}\)
Do \(3-\frac{1}{3^{100}}< 3\) nên:
\(\Rightarrow2\cdot S< 3\)
\(\Rightarrow S< \frac{3}{2}\)    ( 2 )
Từ ( 1 ) và ( 2 ), theo tính chất bắc cầu suy ra:
\(2\cdot A< \frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2\)
\(\Rightarrow A< \frac{3}{2\cdot2}\)
\(\Rightarrow A< \frac{3}{4}\)    ( đpcm )

27 tháng 6 2017

S   =   1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

Số các số hạng của tổng \(S\)là :

 \(\left(9-1\right)\div1+1=9\)( số hạng )

Tổng của dãy số \(S\)là :

  \(\frac{\left(9+1\right).9}{2}=45\)

                          Đ/S: 45

M  =   1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101

Số các số hạng của tổng \(M\)là :

 \(\left(101-1\right)\div1+1=101\)

Tổng của dãy số \(M\)là :

 \(\frac{\left(101+1\right).101}{2}=5151\)

                                     Đ/S : 5151

27 tháng 6 2017

Số số hạng của dãy trên là : 

         (9 - 1) : 1 + 1 = 9 (số)

Tổng là : 

          (9 + 1) x 9 : 2 = 45 

16 tháng 7 2017

a) A = 2 + 22 + 23 + ... + 2100

2A = 22 + 23 + 24 + ... + 2101

2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

A = 2101 - 2

b) B = 1 + 3 + 32 + ... + 3255

3B = 3 + 32 + 33 + ... + 3256

3B - B = (3 + 32 + 33 + ... + 3256) - (1 + 3 + 32 + ... + 3255)

2B = 3256 - 1

B = \(\frac{3^{256}-1}{2}\)

c) C = 1 + 4 + 42 + ... + 4100

4C = 4 + 42 + 43 + ... + 4101

4C - C = (4 + 42 + 43 + ... + 4101) - (1 + 4 + 42 + ... + 4100)

3C = 4101 - 1

C = \(\frac{4^{101}-1}{3}\)

d) D = 1 + 5 + 52 + ... + 51000

5D = 5 + 52 + 53 + ... + 51001

5D - D = (5 + 52 + 53 + ... + 51001) - (1 + 5 + 52 + ... + 51000)

4D = 51001 - 1

D = \(\frac{5^{1001}-1}{4}\)

Câu a ở tử bạn tính tổng của tụi nó lại theo công thức . Mẫu bạn gộp như sau : (101-100)+(99-98)+...+(3-2)+1=...( dễ tính vì toàn là số 1)

Câu b ở tử:3737*43-4343*37=(37*101)*43-(43*101)*37. DỄ DÀNG NHẬN THẤY RẰNG TỪ BẰNG 0. VẬY KHỎI CẦN TÍNH MẪU CX BT ĐÁP ÁN LÀ 0

                                                                                   THANK YOU SO MUCH

Nếu bạn không hiểu thì kb với mk sau đó mk sẽ giải thích