1+2+3+4+5+.......+100+101.Tính,Giải chi tiết ra nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau.
(+1+2-3-4)=-4
(+5+6-7-8)=-4
(+9+10-11-12)=-4
...
(+97+98-99-100)=-4
Vậy cho tới số 100, chia được số nhóm là:
100:4=25 nhóm như vậy,
Suy ra, tổng từ +1 đến -100 là:
25.(-4)=-100
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu?
Theo như trên, thì
S=(-100)+101+102=103
Đáp số:
S=103
b)
Ta thấy : 3 - 1= 2
5 - 3 = 2
7 - 5 = 2
......
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng).
Ta sắp xếp thành các cặp số ta có số cặp số là:
50:2=25( cặp số )
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101
= - 50+101
= 51
x+(x+1)+(x+2)+...+100+101=101
x+(x+1)+(x+2)+....+100=0 (1)
=>[(x+100).n]:2=0
gọi n là số số hạng ở vế trái của (1)
mà n khác 0=>x+100=0
=>x=-100
vậy x=-100
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=3\cdot\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow3\cdot A=3\cdot\frac{1}{3}+3\cdot\frac{2}{3^2}+3\cdot\frac{3}{3^3}+...+3\cdot\frac{100}{3^{100}}+3\cdot\frac{101}{3^{101}}\)
\(\Rightarrow3\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(\Rightarrow3\cdot A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2\cdot A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\left(\frac{2}{3}-\frac{1}{3}\right)+\left(\frac{3}{3^2}-\frac{2}{3^2}\right)+...+\left(\frac{101}{3^{100}}-\frac{100}{3^{100}}\right)-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
Khi đặt \(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\) thì ta sẽ có 2 điều:
- Điều 1: Khi đó:
\(2\cdot A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A=S-\frac{101}{3^{101}}\)
\(\Rightarrow2\cdot A< S\) ( 1 )
Điều 2: Khi đó:
\(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3\cdot\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow3\cdot S=3\cdot1+3\cdot\frac{1}{3}+3\cdot\frac{1}{3^2}+...+3\cdot\frac{1}{3^{100}}\)
\(\Rightarrow3\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3\cdot S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2\cdot S=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{99}}-\frac{1}{3^{99}}\right)-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3+0+0+0+...+0-\frac{1}{3^{100}}\)
\(\Rightarrow2\cdot S=3-\frac{1}{3^{100}}\)
Do \(3-\frac{1}{3^{100}}< 3\) nên:
\(\Rightarrow2\cdot S< 3\)
\(\Rightarrow S< \frac{3}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ), theo tính chất bắc cầu suy ra:
\(2\cdot A< \frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2\)
\(\Rightarrow A< \frac{3}{2\cdot2}\)
\(\Rightarrow A< \frac{3}{4}\) ( đpcm )
S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
Số các số hạng của tổng \(S\)là :
\(\left(9-1\right)\div1+1=9\)( số hạng )
Tổng của dãy số \(S\)là :
\(\frac{\left(9+1\right).9}{2}=45\)
Đ/S: 45
M = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100 + 101
Số các số hạng của tổng \(M\)là :
\(\left(101-1\right)\div1+1=101\)
Tổng của dãy số \(M\)là :
\(\frac{\left(101+1\right).101}{2}=5151\)
Đ/S : 5151
Số số hạng của dãy trên là :
(9 - 1) : 1 + 1 = 9 (số)
Tổng là :
(9 + 1) x 9 : 2 = 45
a) A = 2 + 22 + 23 + ... + 2100
2A = 22 + 23 + 24 + ... + 2101
2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)
A = 2101 - 2
b) B = 1 + 3 + 32 + ... + 3255
3B = 3 + 32 + 33 + ... + 3256
3B - B = (3 + 32 + 33 + ... + 3256) - (1 + 3 + 32 + ... + 3255)
2B = 3256 - 1
B = \(\frac{3^{256}-1}{2}\)
c) C = 1 + 4 + 42 + ... + 4100
4C = 4 + 42 + 43 + ... + 4101
4C - C = (4 + 42 + 43 + ... + 4101) - (1 + 4 + 42 + ... + 4100)
3C = 4101 - 1
C = \(\frac{4^{101}-1}{3}\)
d) D = 1 + 5 + 52 + ... + 51000
5D = 5 + 52 + 53 + ... + 51001
5D - D = (5 + 52 + 53 + ... + 51001) - (1 + 5 + 52 + ... + 51000)
4D = 51001 - 1
D = \(\frac{5^{1001}-1}{4}\)
Câu a ở tử bạn tính tổng của tụi nó lại theo công thức . Mẫu bạn gộp như sau : (101-100)+(99-98)+...+(3-2)+1=...( dễ tính vì toàn là số 1)
Câu b ở tử:3737*43-4343*37=(37*101)*43-(43*101)*37. DỄ DÀNG NHẬN THẤY RẰNG TỪ BẰNG 0. VẬY KHỎI CẦN TÍNH MẪU CX BT ĐÁP ÁN LÀ 0
THANK YOU SO MUCH
Nếu bạn không hiểu thì kb với mk sau đó mk sẽ giải thích
số các số hạng là:
(101-1)/1+1=101(số)
tổng các số là:
(101+1)*101/2=5151
Đáp số: 5151