trong hay so 2018 mũ n trừ 1 va 2018 mũ n cộng 1 co đồng thời là số nguyên tố ko (n E N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
p là số nguyên tố lớn hơn 3 => p không chia hết cho 3 => p1009 không chia hết cho 3
Mà một số chính phương khi chia 3 chỉ có thể dư 0 hoặc 1 => p2018 = (p1009)2 khi chia 3 dư 1
Ta có 2018 khi chia 3 dư 2 => p2018 + 2018 chia hết cho 3
Mặt khác p2018 + 2018 > 3, nên p2018 + 2018 là hợp số.