Cho tam giác MNK vuông ở M có MN=5,MK=6. Tính NK và các tỉ số lượng giác của góc N và K
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py Ta Go vào tam giác MNK ta được:
NK^2=NM^2+MK^2
NK^2=9^2+12^2
NK^2=81+144
NK^2=225
=>NK=15
a: NP=10cm
C=MN+MP+NP=24(cm)
b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có
NK chung
\(\widehat{MNK}=\widehat{ENK}\)
Do đó: ΔMNK=ΔENK
c: Ta có: MK=EK
mà EK<KP
nên MK<KP
Hình tự vẽ :(
Gọi \(Q\) là giao điểm của \(HK\) và \(MN\)
\(\Rightarrow KQ\) là đường trung tuyến của \(\Delta MNK\Rightarrow QM=QN\)
Xét \(\Delta MNI\) và \(\Delta KNM\) \(\left(\widehat{M}=\widehat{K}=90^o\right)\)
ta có: \(\widehat{N}\) là góc chung
\(\Rightarrow\Delta MNI\sim\Delta KNM\) \(\left(g-g\right)\)
mà \(\Delta KNM\) là tam giác vuông cân tại \(\widehat{K}\) \(\left(gt\right)\)
\(\Rightarrow\Delta MNI\) là tam giác vuông cân tại \(\widehat{M}\)
\(\Rightarrow MN=MI\) \(\Rightarrow MI=5\)
mà \(MK\) là đường cao của \(\Delta MNI\)
\(\Rightarrow MK\) cũng là trung tuyến của \(\Delta MNI\)
\(\Rightarrow KN=KI\)
Xét \(\Delta MNI\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(KN=KI\) \(\left(cmt\right)\)
\(\Rightarrow QK\) là đường trung bình của \(\Delta MNI\)
\(\Rightarrow QK=\dfrac{MI}{2}=\dfrac{5}{2}\)
Xét \(\Delta MNP\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(HN=HP\) (\(H\) là trung điểm của \(NP\))
\(\Rightarrow QH\) là đường trung bình của \(\Delta MNP\)
\(\Rightarrow QH=\dfrac{MP}{2}=\dfrac{13}{2}\)
Ta có \(QH=QK+HK\)
\(\Rightarrow HK=QH-QK=\dfrac{13}{2}-\dfrac{5}{2}=4\)
Vậy \(HK=4\)
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
mà \(\widehat{MNK}=60^0\)
nên ΔNMK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔMNK có NM=NK
nên ΔMNK cân tại N
Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)
nên ΔMNK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:
\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)
\(NK\) là cạnh chung
\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)
b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)
\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MNQ\) cân tại \(N\)
Mà \(\widehat{MNQ}=60^o\)
\(\Rightarrow\Delta MNQ\) đều
Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)
\(\Rightarrow\Delta NKP\) cân tại \(K\)
c) Vì \(\Delta NMQ\) đều (chứng minh trên)
\(\Rightarrow NM=MQ=NQ=8cm\)
Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:
\(PN=2MN=2.8=16cm\)
\(\Rightarrow PQ=16-8=8cm\)
a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔMNK=ΔQNK
b: Ta có: ΔMNK=ΔQNK
nên NM=NQ
=>ΔNMQ cân tại N
mà \(\widehat{MNQ}=60^0\)
nên ΔMNQ đều
Xét ΔNKQ có
\(\widehat{KPN}=\widehat{KNP}\)
nên ΔNKQ cân tại K
c: Xét ΔMNP vuông tại M có
\(\cos N=\dfrac{MN}{NP}\)
=>NP=16(cm)
=>\(MP=8\sqrt{3}\left(cm\right)\)
a: Xét ΔNMH vuông tại M và ΔNEH vuông tại E có
NH chung
góc MNH=góc ENH
=>ΔNMH=ΔNEH
b: Xét ΔNME có NM=NE và góc MNE=60 độ
nên ΔMNE đều
tam giác MNK vuông ở M có NK2=MN2+MK2
NK2=25+36=61
NK=\(\sqrt{61}\)
sinN=\(\dfrac{MK}{NK}=\dfrac{6}{\sqrt{61}};cosN=\dfrac{MN}{NK}=\dfrac{5}{\sqrt{61}};tanN=\dfrac{6}{5};cotanN=\dfrac{5}{6}\)
\(sinK=\dfrac{5}{\sqrt{61}};cosK=\dfrac{6}{\sqrt{61}};tanK=\dfrac{5}{6};cotanK=\dfrac{6}{5}\)