K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}\)

\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....;\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{49\cdot50}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 1-\frac{1}{50}\)

\(\Rightarrow A< 1\Rightarrow1+A< 1+1=2\)

\(\Rightarrow\frac{1}{2^2}\cdot\left(1+A\right)< \frac{1}{2^2}\cdot2=\frac{1}{2}\)(đpcm)

14 tháng 5 2017

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}\)

\(2^2A=\frac{2^2}{4^2}+\frac{2^2}{6^2}+\frac{2^2}{8^2}+...+\frac{2^2}{100^2}\)

\(4A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow4A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

=> \(4A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=>\(4A< 1-\frac{1}{50}\)

=> 4A < 1 

=> A < \(\frac{1}{4}\)(đpcm)

13 tháng 12 2015

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)

\(4A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)

\(3A=4A-A=1-\frac{1}{2^{100}}<1\)

\(A<\frac{1}{3}\)

29 tháng 8 2015

Thu Thảo Vũ tick đúng cho mình nhé Thu Thảo Vũ

1 tháng 11 2016

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)

\(2^2.A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)

\(2^2.A-A=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\right)\)

\(4.A-A=1-\frac{1}{2^{100}}< 1\)

\(3A< 1\)

\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)

17 tháng 5 2017

Gọi dãy trên là A, Ta có: 

1/52+1/62+1/72+...+1/1002 < 1/4.5+1/5.6+1/6.7+...+1/99.100

<=> 1/52+1/62+1/72+...+1/1002 < 1/4 - 1/100

<=> 1/52+1/62+1/72+...+1/1002 < 6/25

Mà 6/25 < 1/4 => A < 1/4

6/25 > 1/6 => A > 1/6

V ậ y: 1/6 < A < 1/4

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

21 tháng 8 2018

Ta thấy: k2 > (k - 1)(k + 1)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right).\dfrac{1}{2}\)

\(=\left(1-\dfrac{1}{101}\right).\dfrac{1}{2}\)

\(=\dfrac{100}{101}.\dfrac{1}{2}< 1.\dfrac{1}{2}=\dfrac{1}{2}\)