K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2022

a: \(A=\dfrac{4y-8\sqrt{y}-8y}{y-4}:\dfrac{\sqrt{y}-1-2\sqrt{y}+4}{\sqrt{y}\left(\sqrt{y}-2\right)}\)

\(=\dfrac{-4\sqrt{y}\left(\sqrt{y}+2\right)}{y-4}\cdot\dfrac{\sqrt{y}\left(\sqrt{y}-2\right)}{-\sqrt{y}+3}\)

\(=\dfrac{4y}{\sqrt{y}-3}\)

b: Để A=-2 thì \(4y=-2\sqrt{y}+6\)

=>\(4y+2\sqrt{y}-6=0\)

=>y=1

10 tháng 8 2018

\(A=\left(\dfrac{4\sqrt{y}}{2+\sqrt{y}}+\dfrac{8y}{4-y}\right):\left(\dfrac{\sqrt{y}-1}{y-2\sqrt{y}}-\dfrac{2}{\sqrt{y}}\right)\\ =\left(\dfrac{4\sqrt{y}.\left(2-\sqrt{y}\right)+8y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}\right):\left(\dfrac{\sqrt{y}-1-2\left(\sqrt{y}-2\right)}{\sqrt{y}\left(\sqrt{y}-2\right)}\right)\\ =\left(\dfrac{4\sqrt{y}\left(2+\sqrt{y}\right)}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}\right):\left(\dfrac{3-\sqrt{y}}{\sqrt{y}\left(\sqrt{y}-2\right)}\right)\\ =.\dfrac{4\sqrt{y}.\left(-\sqrt{y}\right)\left(2-\sqrt{y}\right)}{\left(2-\sqrt{y}\right)\left(3-\sqrt{y}\right)}\\ =\dfrac{-4y}{3-\sqrt{y}}\)

Ta có:

\(A=\dfrac{-4y}{3-\sqrt{y}}=-2\Rightarrow-4y=-6+2\sqrt{y}\Rightarrow-4y+4\sqrt{y}-6\sqrt{y}+6=0\\ \Rightarrow-4\sqrt{y}\left(\sqrt{y}-1\right)-6\left(\sqrt{y}-1\right)=0\\ \Rightarrow\left(\sqrt{y}-1\right)\left(-4\sqrt{y}-6\right)=0\Rightarrow\sqrt{y}-1=0\Rightarrow y=1\)

22 tháng 6 2021

\(A=\left(\dfrac{4\sqrt{y}}{2+\sqrt{y}}+\dfrac{8y}{4-y}\right):\left(\dfrac{\sqrt{y}-1}{y-2\sqrt{y}}-\dfrac{2}{\sqrt{y}}\right)\)

\(A=\dfrac{4\sqrt{y}\left(2-\sqrt{y}\right)+8y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}:\dfrac{\sqrt{y}-1-2\left(\sqrt{y}-2\right)}{\sqrt{y}\left(\sqrt{y}-2\right)}\)

\(A=\dfrac{8\sqrt{y}+4y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}.\dfrac{\sqrt{y}\left(\sqrt{y}-2\right)}{-\sqrt{y}+3}\)

\(A=\dfrac{4\sqrt{y}}{2-\sqrt{y}}.\dfrac{\sqrt{y}\left(2-\sqrt{y}\right)}{\sqrt{y}-3}\)

\(A=\dfrac{4y}{\sqrt{y}-3}\)

Chúc bạn học tốt ^^

12 tháng 11 2021

5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)

1 tháng 2 2019

\(A=\left(\dfrac{4\sqrt{y}}{2+\sqrt{y}}+\dfrac{8y}{4-y}\right):\left(\dfrac{\sqrt{y}-1}{y-2\sqrt{y}}-\dfrac{2}{\sqrt{y}}\right)\)

\(=\dfrac{4\sqrt{y}\left(2-\sqrt{y}\right)+8y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}:\dfrac{\sqrt{y}-1-2\left(\sqrt{y}-2\right)}{\sqrt{y}\left(\sqrt{y}-2\right)}\)

\(=\dfrac{8\sqrt{y}-4y+8y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}\cdot\left(\dfrac{-\sqrt{y}\left(2-\sqrt{y}\right)}{-\left(\sqrt{y}-3\right)}\right)=\dfrac{4y\left(\sqrt{y}+2\right)}{\left(\sqrt{y}+2\right)\left(\sqrt{y}-3\right)}=\dfrac{4y}{\sqrt{y}-3}\)

a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\sqrt{\dfrac{\left(\sqrt{x+1}\right)^2}{\left(\sqrt{x}+1\right)^2}}\)

=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1};x\ge0\)

b) Ta có: \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}\)

\(=\dfrac{1}{x-1}\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:

\(A=\frac{x+y}{\sqrt{xy}}: \frac{x-y}{\sqrt{xy}}=\frac{x+y}{\sqrt{xy}}.\frac{\sqrt{xy}}{x-y}=\frac{x+y}{x-y}\)

\(=\frac{1+a+1-a}{1+a-(1-a)}=\frac{2}{2a}=\frac{1}{a}\)

6 tháng 12 2023

a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)

\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)

b) Xét tử: 

\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1) 

Xét mẫu: 

\(x+\sqrt{xy}+y\)

\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2) 

Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm)