K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

\(\left(x^2-2.3.x+9\right)+\left(y^2+2.5.y+25\right)=58\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)

vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y+5\right)^2\ge0\end{cases}\text{và là hai số chính phương}}\)

mà 58 chẵn => \(\hept{\begin{cases}\left(x-3\right)^2\\\left(y+5\right)^2\end{cases}\text{cùng tính chẵn lẻ}}\)

tự c/m nha, bn xét SCP chẵn, lẻ là đc(ko c/m đc ib)

\(\text{mà chỉ có 49, 9 t/m điều kiện }\Rightarrow...\)

11 tháng 1 2019

\(x^2-6x+y^2+10y=24\)

\(\Leftrightarrow x^2-6x+9+y^2+10x+25=58\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2=58\)

\(\Leftrightarrow\left(x-3\right)^2\le58\Leftrightarrow\left(x-3\right)^2\in\left\{0;1;4;9;16;25;36;49\right\}\)

Dễ nhận thấy chỉ có tổng của 49 và: 9; 9 và 49 thỏa mãn (vì các số trên là số chính phương

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}\left(x-3\right)^2=49\Leftrightarrow x-3=7\Leftrightarrow x=10\\\left(y+5\right)^2=9\Leftrightarrow y+5=3\Leftrightarrow y=-2\end{cases}}\\\end{cases}}\)<=> (x-3)^2+(y+5)^2=49+9=9+49

+) (x-3)^2+(y+5)^2=49+9

=> x-3=7=>x=10 và: y+5=3=>y=-2

+) (x-3)^2+(y+5)^2=9+49

=> (x-3)=3=>x=6 và y+5=7=>y=2

Vậy có 2 cặp (x,y)={(6;2);(10;-2)}

thỏa mãn điều kiện

NV
12 tháng 12 2020

Bạn xem lại đề, nghiệm của hệ này rất xấu (chính xác là ko thể giải được nếu ko áp dụng công thức nghiệm Cardano của pt bậc 3)

23 tháng 11 2019

Có: \(6x^2y^3+3x^2-10y^3=-2\)

<=> \(3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)+5=-2\)

<=> \(\left(2y^3+1\right)\left(3x^2-5\right)=-7\)

Th1: \(\hept{\begin{cases}2y^3+1=-7\\3x^2-5=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-4\\x^2=2\end{cases}\left(loai\right)}\)

Th2: \(\hept{\begin{cases}2y^3+1=-1\\3x^2-5=7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-1\\x^2=4\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=\pm2\end{cases}}\)

Th3: \(\hept{\begin{cases}2y^3+1=1\\3x^2-5=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=0\\x^2=-\frac{2}{3}\end{cases}\left(loai\right)}\)

Th4: \(\hept{\begin{cases}2y^3+1=7\\3x^2-5=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=3\\x^2=\frac{4}{3}\end{cases}\left(loai\right)}\)

Vậy phương trình có nghiệm: ( -2;-1) và ( 2; -1)

NV
8 tháng 1 2024

\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)

- Với \(x=2\Rightarrow y=5\)

- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\) 

Đặt \(y-5=n\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)

\(\Rightarrow x^2+8=n^2\)

\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)

\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)