Cho tam giác ABC bất kì. Vẽ các đường thẳng trung trực của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,vẽ tam giác ABC . Về các đường trung trực của các đoạn thẳng AB,BC,CA
b, vẽ đường tròn tâm O bán kính R=3 cm. lấy ba điểm A,B,C phân biệt bất kì trên đường tròn. về các dây AB,BC,CÁ. V e các đường trung trực của các đoạn thẳng AB,BC,CA
câu này mik chịu
Gọi I là giao điểm của đường trung trực của BC với BC . Nối KC
Ta có tam giác EIC = tam giác EIB ( c.g.c )
=> CE = BE ( hai cạnh tương ứng )
chu vi tam giác AEB = AE + AB + BE = AE + AB + CE ( do BE = CE )
=> chu vi tam giác ABE = AB + AC ( do AE + CE = AC )
tam giác KIB = tam giác KIC ( c.g.c )
=> KB = KC ( hai cạnh tương ứng )
chu vi tam giác AKB = AK + BK + AB = AK + KC + AB ( do BK = CK )
xét tam giác ACK theo bất đẳng thức tam giác ta có
AK + CK > AC
=> AK + CK + AB > AC + AB
=> chu vi tam giác ABK > chu vi tam giác ABE
a: ΔABC cân tại A
mà AE là phân giác
nên AE là trung trực của BC
b: O nằm trên trung trực của AB
=>OA=OB
O nằm trên trung trực của BC
=>OB=OC
=>OA=OC
=>O nằm trên trung trực của AC
c: OA=OB=OC
=>O cách đều 3 đỉnh của ΔABC
A B C D E F H I K
DE//BC, AH vuông góc BC => AH vuông góc DE (Qhệ //, vuông góc) (1)
BC//AD, AC//BD => BC=AD, AC=BD (T/c đoạn chắn), tương tự BC=AE => BC=AD=AE (2)
Từ (1) và (2) => AH là trung trực của DE.
Tương tự với các cạnh của tam giác DEF và đường cao của tam giác ABC, ta có:
BI vuông góc DF, AC=BD=BF => BI là trung trực của DF
CK vuông góc EF, AB=CE=CF => CK là trung trực của EF.
Kết luận:...