\(|15-|4x||=2017\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2-4x+2017=4\left(x^2-x\right)+2017=4\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+2016=4\left(x-\dfrac{1}{2}\right)^2+2016\ge2016\)
\(B=3x-x^2-15\\=-\left(x^2-3x+15\right)=-\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{51}{4}\right)\\ =-\left(x-\dfrac{3}{2}\right)^2-\dfrac{51}{4}\le-\dfrac{51}{4}\)
\(C=3a^2-2ab+b^2-4a+4\\ =\left(a^2-2ab+b^2\right)+\left(2a^2-4a+4\right)\\ =\left(a-b\right)^2+2\left(a^2-2.a.1+1+1\right)\\ =\left(a-b\right)^2+2\left(a-1\right)^2+2\ge2\)
Ta có : (2x + 1)3 = 125
=> (2x + 1)3 = 53
=> 2x + 1 = 5
=> 2x = 4
=> x = 2
Ta có : (4x - 1)2 = 25 x 9
=> (4x - 1)2 = 52.32
=> (4x - 1)2 = 152
\(\Leftrightarrow\orbr{\begin{cases}4x-1=15\\4x-1=-15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=16\\4x=-14\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{7}{2}\end{cases}}\)
a) Giá trị của biểu thức là âm 50
b) Giá trị của biểu thức là âm 2008
Chúc bạn may mắn nhé!
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
\(x=2-\sqrt{3}\)
suy ra
\(x^2-4x=7-4\sqrt{3}-8+4\sqrt{3}=-1\)
bây giờ thì dễ rồi
thay vào nhé
\(A=6\left(-1\right)^{2017}+8\left(-1\right)^{2017}+2016=2002\)
a)\(P=x^2+4x+2xy+3y^2+5y+2017\)
\(=x^2+2xy+y^2+4y+4+4x+2y^2+y+\dfrac{1}{8}+\dfrac{16103}{8}\)
\(=\left(x+y+2\right)^2+2\left(y^2+\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{16103}{8}\)
\(=\left(x+y+2\right)^2+2\left(y+\dfrac{1}{4}\right)^2+\dfrac{16103}{8}\ge\dfrac{16103}{8}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{7}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(Q=-x^2+4x-3y^2+6y+2017\)
\(=-x^2+4x-4-3y^2+6y+3+2024\)
\(=-\left(x^2-4x+4\right)-\left(3y^2-6y-3\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y^2-2y-1\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\ge2024\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Ta có:
\(P=x^2+4x+2xy+3y^2+5y+2017\)
\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+2y^2+y+2013\)
\(=\left[x+\left(y+2\right)\right]^2+2\left(y^2+y+0,25\right)+2012,5\)
\(=\left(x+y+2\right)^2+2\left(y+0,5\right)^2+2012,5\ge2012,5\)
Dấu "=" xảy ra khi:
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=0\\y+0,5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)
Vậy \(minP=2012,5\) khi \(\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)
Ta có:
\(Q=-x^2+4x-3y^2+6y+2017\)
\(=-\left(x^2-4x+4\right)-3\left(y^2-2y+1\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\le2024\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(maxQ=2024\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
\(\left|15-\left|4x\right|\right|=2017\)
\(\Rightarrow\left|15-4x\right|=2017\)
\(\Rightarrow\hept{\begin{cases}15-4x=2017\\15-4x=-2017\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{2002}{4}\\x=508\end{cases}}\)
|15−|4x||=2017\(\Rightarrow\orbr{\begin{cases}15-|4\chi|=2017\\15-|4\chi|=-2017\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}|4\chi|=-2002\\|4\chi|=2032\end{cases}}\)(loại vì \(|a|\ge0\))\(\Rightarrow\orbr{\begin{cases}4\chi=2032\\4\chi=-2032\end{cases}}\Rightarrow\orbr{\begin{cases}\chi=508\\\chi=-508\end{cases}}\)
HTDT