K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

B đạt giá trị lớn nhất \(\Leftrightarrow\frac{21}{8.\left|15x-21\right|+7}\) đạt GTLN

                              \(\Leftrightarrow8.\left|15x-21\right|+7\) đạt GTNN

 Vì \(\left|15x-21\right|\ge0\left(\forall x\in Z\right)\)

Nên suy ra \(8.\left|15x-21\right|+7\ge7\)

Dấu "=" xảy ra <=> \(15x-21=0\Leftrightarrow15x=21\Leftrightarrow x=\frac{21}{15}=\frac{7}{5}\)

Vậy GTLN của biểu thức B = \(\frac{-1}{3}+\frac{21}{7}=\frac{8}{3}\) khi \(x=\frac{7}{5}\)

8 tháng 1 2019

\(B=-\frac{1}{3}+\frac{21}{8\left|15x-21\right|+7}\le-\frac{1}{3}+\frac{21}{7}=-\frac{1}{3}+3=\frac{8}{3}\)

Dấu ''='' xảy ra \(\Leftrightarrow15x-21=0\)

                        \(\Leftrightarrow x=\frac{7}{5}\)

Vậy ........

31 tháng 10 2016

a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất

Có: \(4.\left|3x+7\right|+3\ge3\forall x\)

Dấu "=" xảy ra khi |3x + 7| = 0

=> 3x + 7 = 0

=> 3x = -7

\(\Rightarrow x=\frac{-7}{3}\)

Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10

Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)

b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất

Có: \(8.\left|15x-21\right|+7\ge7\forall x\)

Dấu "=" xảy ra khi |15x - 21| = 0

=> 15x - 21 = 0

=> 15x = 21

\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)

Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)

Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)

c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)

\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)

hay \(C\ge9\)

Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)

Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)

31 tháng 10 2016

thanks bn nhìu lắm lun

9 tháng 8 2019

Vì bài dài quá nên mình làm một bài rồi bạn tự làm như vậy nha !  Vì đề này cũng tương tự nhau cả nha bạn !

Nhưng mình không chắc lắm ! Bài này rối quá !

 \(\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)

Biểu thức trên đạt GTLN khi \(\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\) đạt GTLN

                                        \(\Leftrightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|+8\) nhỏ nhất

                                         \(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\) phải nhỏ nhất vì \(\text{ }\left|3x+5\right|\ge0\text{ và }\left|4y+5\right|\ge0\) nên khi cộng với 8 mới có GTNN

Ta có : \(\left|3x+5\right|\ge3x+5\) . Dấu " = " xảy ra khi \(3x+5\ge0\)  \(\Rightarrow\text{ }3x\ge-5\) \(\Rightarrow\text{ }x\ge-\frac{5}{3}\)

             \(\left|4y+5\right|\ge4y+5\).. Dấu " = " xảy ra khi \(4y+5\ge0\)   \(\Rightarrow\text{ }4y\ge-5\)  \(\Rightarrow\text{ }y\ge-\frac{5}{4}\)

Mà \(\left|3x+5\right|+\left|4y+5\right|\) nhỏ nhất \(\Rightarrow\text{ }x,y\text{ nhỏ nhất }\) 

Vậy \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\)

\(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+5\right)+\left(4y+5\right)\)

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+4y\right)+10\)

Thay \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\) vào vế phải của biểu thức ta được :

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3\cdot\frac{-5}{3}+4\cdot\frac{-5}{4}\right)+10\)

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(-5+\left(-5\right)\right)+10\)

\(\left|3x+5\right|+\left|4y+5\right|\ge0\)

Vậy min \(\left|3x+5\right|+\left|4y+5\right|=0\)

\(\Rightarrow\text{ min }\left|3x+5\right|+\left|4y+5\right|+8=8\)

\(\Rightarrow\text{ }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\)

\(\Rightarrow\text{ Max }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}=\frac{33}{10}\)

9 tháng 8 2019

Làm mẫu

a) Ta có: \(\left|3x+7\right|\ge0\)

\(\Leftrightarrow4\left|3x+7\right|\ge0\)

\(\Leftrightarrow4\left|3x+7\right|+3\ge3\)

\(\Leftrightarrow\frac{15}{4\left|3x+7\right|+3}\le5\)

\(\Leftrightarrow5+\frac{15}{4\left|3x+7\right|+3}\le10\)

Vậy GTLN của bt là 10\(\Leftrightarrow x=\frac{-7}{3}\)

25 tháng 11 2015

Ta có

trị tuyệt đối của 15x-2 \(\ge0\)

=>8 nhân trị tuyệt đối của 15x-2\(\ge0\)

=>8 nhân trị tuyệt đối của 15x-2 +7 lớn hơn hoặc bằng 7

=>\(\frac{21}{8\left(15x-2\right)+7}\le3\)

=>Ans+\(+-\frac{1}{3}\le\frac{8}{3}\)

Dấu bằng xảy ra<=>x=2/15

nhớ tick nha

23 tháng 1 2019

6

27 tháng 1 2019

a, để Amax khi\(\dfrac{15}{4\left|3x+7\right|+3}max\) khi:

\(\left\{{}\begin{matrix}4\left|3x+7\right|+3min\\4\left|3x+7\right|+3>0\end{matrix}\right.\)

\(4\left|3x+7\right|+3\ge3\)nên max A=10 khi x=\(\dfrac{-7}{3}\)

13 tháng 5 2021

\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)

\(\Leftrightarrow\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7x-14-3x\left(x+1\right)}{21}\)

\(\Leftrightarrow3x-7-3x^2+6x\le7x-14-3x^2-3x\)

\(\Leftrightarrow9x-7\le4x-14\Leftrightarrow5x\le-7\Leftrightarrow x\le-\frac{7}{5}\)

vậy tập nghiệm của bft là S = { x | x =< -7/5 } 

13 tháng 5 2021

\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)

\(< =>\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7\left(x-2\right)}{21}-\frac{3x\left(x+1\right)}{21}\)

\(< =>3x-7-3x^2+6x\le7x-14-3x^2+3x\)

\(< =>-3x^2+3x+9x-7-10x+14\le0\)

\(< =>-x-7\le0\)

\(< =>x+7\ge0< =>x\ge-7\)

vậy với x >= -7 thì ....

27 tháng 3 2018

\(A=\left(4+\frac{1}{5}\right).\frac{19}{8}+\left(2+\frac{5}{8}\right).\frac{21}{5}\)                                                                                                                                                     =\(\frac{21}{5}.\frac{19}{8}+\frac{21}{8}.\frac{21}{5}\)                                                                                                                                                                             =\(\frac{21}{5}.\left(\frac{19}{8}+\frac{21}{8}\right)\)                                                                                                                                                                           = \(\frac{21}{5}.5\) =21                                                                                                                                                                                       \(B=\frac{25}{2}.\left(3+\frac{2}{7}\right)-\frac{23}{7}.\left(5+\frac{1}{2}\right)\)                                                                                                                                            =\(\frac{25}{2}.\frac{23}{7}-\frac{23}{7}.\frac{11}{2}\)                                                                                                                                                                       =\(\frac{23}{7}.\left(\frac{25}{2}-\frac{11}{2}\right)\)                                                                                                                                                                          =\(\frac{23}{7}.7=23\)