Tìm
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-\frac{2}{4}\right)\cdot\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{1}{2}\end{cases}}\)
còn lại tương tự bài trên
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
a) \(\left(x+1\right)-\frac{x+1}{3}=\frac{5\left(x+1\right)-1}{6}\)
\(\Leftrightarrow6\left(x+1\right)-2\left(x+1\right)=5\left(x+1\right)-1\)
\(\Leftrightarrow6x+6-2x-2=5x+5-1\)
\(\Leftrightarrow6x-2x-5x=5-1-6+2\)
\(\Leftrightarrow-x=0\)
\(\Leftrightarrow x=0\)
b) \(\left(1-x\right)^2+\left(x+2\right)^2=2x\left(x-3\right)-7\)
\(\Leftrightarrow1-2x+x^2+x^2+4x+4=2x^2-6x-7\)
\(\Leftrightarrow2x^2+2x+5=2x^2-6x-7\)
\(\Leftrightarrow2x+6x=-7-5\)
\(\Leftrightarrow8x=-12\)
\(\Leftrightarrow x=-\frac{3}{2}\)
c) \(2+\frac{x-2}{2}-\frac{2x-4}{3}-\frac{5}{6}\left(2-x\right)=0\)
\(\Leftrightarrow2+\frac{x}{2}-1-\frac{2}{3}x+\frac{4}{3}-\frac{5}{3}+\frac{5}{6}x=0\)
\(\Leftrightarrow\frac{x}{2}-\frac{2}{3}x+\frac{5}{6}x=-2+1-\frac{4}{3}+\frac{5}{3}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{2}{3}\)
\(\Leftrightarrow x=-1\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
\(\Leftrightarrow2x-5=0\left(h\right)\frac{3}{2}x+9=0\left(h\right)0,3x-12=0\)
\(\Leftrightarrow x=\frac{5}{2}\left(h\right)x=-6\left(h\right)x=40\)
Vậy ......
P/s (h) là hoặc
\(\Leftrightarrow2x-5=0\Rightarrow x=\frac{5}{2}\)
họcc\(\frac{3}{2}x+9=0\Rightarrow x=-6\)
hoăc\(0,3x-12=0\Rightarrow x=40\)