\(\frac{1}{\left(x+29\right)^2}\)+\(\frac{1}{\left(x+30\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x + 29 = a (a \(\ne-29;-30\))
Đề trở thành: \(\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{a^2+2a+1+a^2}{a^2\left(a^2+2a+1\right)}=\frac{5}{4}\)
\(\Leftrightarrow\frac{2a^2+2a+1}{a^4+2a^3+a^2}=\frac{5}{4}\)
\(\Leftrightarrow8a^2+8a+4=5a^4+10a^3+5a^2\)
\(\Leftrightarrow5a^4+10a^3-3a^2-8a-4=0\)
\(\Leftrightarrow5a^4+10a^3-3a^2-6a-2a-4=0\)
\(\Leftrightarrow5a^3\left(a+2\right)-3a\left(a+2\right)-2\left(a+2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(5a^3-3a-2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(5a^3-5a+2a-2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(a-1\right)\left(5a^2+5a+2\right)=0\)
tới đây dễ r`
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
\(\frac{1}{\left(x+29\right)^2}+\frac{1}{\left(x+30\right)^2}=\frac{\left(x+30\right)^2}{\left(x+29\right)^2\left(x+30\right)^2}+\frac{\left(x+29\right)^2}{\left(x+29\right)^2\left(x+30\right)^2}\)
\(=\frac{x^2+60x+900+x^2+58x+841}{\left(x+29\right)^2\left(x+30\right)^2}\)
\(=\frac{2x^2+118x+1741}{\left(x+29\right)^2\left(x+30\right)^2}\)