Tìm x biết:
4x3-9x=0
x3+8x=0
-x3+9x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
c: \(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\\x=-5\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^3+9x=0\)
\(x\left(x^2+9\right)=0\)
\(x^2+9=0\)
\(x^2=-9\)
mà \(x^2\text{≥}\text{∀}x\)
⇒ Không tồn tại x thỏa mãn
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)
a)\(4x^3-9x=0\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=\frac{9}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy x = 0 hoặc \(x=\frac{3}{2}\)
b) \(x^3+8x=0\Leftrightarrow x\left(x^2+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=-8\left(L\right)\end{cases}}\)
Vậy x = 0
c) \(-x^3+9x=0\Leftrightarrow x\left(-x^2+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x^2+9=0\\x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=9\\x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}\)
Vậy ...