K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giải ra nha

25 tháng 1 2022

tô ngán toán nâng cao lớp 6 lắm rồi thề luôn

\(\text{Gọi ƯCLN(2x+5;x+2)=d}\left(d\in N\right)\)

\(\text{Ta có:}\)

\(\text{2x+5⋮d;x+2⋮d}\)

\(\Rightarrow\text{2x+5⋮d;2(x+2)⋮d}\)

\(\Rightarrow\text{2x+5⋮d;2x+4⋮d}\)

\(\Rightarrow\text{2x+5-(2x+4)⋮d}\)

\(\Rightarrow\text{2x+5-2x-4⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)

\(\Rightarrow\text{ƯCLN}\left(2x+5;x+2\right)=1\)

\(\Rightarrow\text{2x+5 không chia hết cho 3 hoặc x+2 không chia hết cho 3 hoặc cả hai không chia hết cho 3}\)

\(\text{TH1:2x+5 không chia hết cho 3;x+2 chia hết cho 3}\)

\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)

\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)

\(\text{TH2:2x+5 chia hết cho 3;x+2 không chia hết cho 3}\)

\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)

\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)

\(\text{TH3:2x+5 không chia hết cho 3;x+2 không chia hết cho 3}\)

\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)

\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)

\(\text{Vậy không có cặp số tự nhiên (x,y) thỏa mãn}\)

31 tháng 3 2022

(2x+1)(x-5)=12

2x2-9x-17=0

delta=217

x1= \(\frac{-\left(-9\right)-\sqrt{217}}{2\cdot2}=\frac{9-\sqrt{217}}{4}\)   x2=\(\frac{-\left(-9\right)+\sqrt{217}}{2\cdot2}=\frac{9+\sqrt{217}}{4}\)

P/s: ko có y hả b?

4 tháng 11

1) 3n ⋮ 2n - 5

=> 2(3n) - 3(2n - 5)  ⋮ 2n - 5

=> 6n - 6n + 15 ⋮ 2n - 5

=> 15 ⋮ 2n - 5

=> 2n-5 ϵ Ư(15)

Ư(15) = {1;-1;3;-3;5;-5;15;-15}

=> n={3;2;4 ;1;5;0;10;-5

23 tháng 8 2023

a) Giả sử \(x^2+x⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)

\(\Rightarrow x^2+x+1⋮̸9\)

\(\Rightarrow dpcm\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

Ta thấy \(x\left(x+1\right)\) là số chẵn

\(\left(1\right)\Rightarrow3^y-1\) là số chẵn

\(\Rightarrow y\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài

23 tháng 8 2023

Đính chính

a) Giả sử \(x^2+x\) \(⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x^2+x+1\) \(⋮̸9\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn

\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)

11 tháng 8 2023

1. \(x⋮15\Rightarrow x\in B\left(15\right)=\left\{0;15;30;45;60;75;90;105;120;135;150;...\right\}\)

mà \(45< x< 136\)

\(\Rightarrow x\in\left\{60;75;90;105;120;135\right\}\)

11 tháng 8 2023

2.

\(18⋮x\Rightarrow x\in U\left(18\right)=\left\{1;2;3;6;18\right\}\)

mà \(x>7\Rightarrow\Rightarrow x\in\left\{18\right\}\)

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

29 tháng 7 2016

Bạn có thể tham khảo cách của mình:

Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y

-TH x=y:

x+1 chia hết cho y

<=> y+1 chia hết cho y

=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)

Ta có cặp so (x;y)=(1;1)

-TH x>y:

Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k

Thay vào ta có: y+1 chia hết cho x

                 <=> x-k+1 chia hết cho x

                 Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x

                 <=> 1-k =0 hoặc >0

+Nếu 1-k=0 thì k=1

Thay vào ta có: x+1 chia hết cho y

                  <=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2

=> y={1;2}. Vậy x={2;3} tương ứng.

Ta có cặp số x;y=(1;2);(2;3)

+Nếu 1-k>0:

Do k thuộc N* nên 1-k>0 là vô lý

Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)

28 tháng 7 2016

Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.

- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).

- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y

Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x

⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy

⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.

Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54

Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)

⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2

Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3

Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

21 tháng 11 2015

d 10^n+72^n -1

=10^n -1+72n

=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n

=9[10^(n-1)+10^(n-2)+..........................-9n+81n