K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

Đề được sửa lại là: Cho \(x;y;z>0\) sao cho xyz = 1

cm: \(\dfrac{1}{x^2+y+z}+\dfrac{1}{y^2+x+z}+\dfrac{1}{z^2+x+y}\le\dfrac{3}{x+y+z}\)

Áp dụng BĐT bunhiacopxki ta có:\(\left(x^2+y+z\right)\left(1+y+z\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\dfrac{1}{x^2+y+z}\le\dfrac{1+y+z}{\left(x+y+z\right)^2}\) (1)

bn tự chứng minh các BĐT tương tự (1) rồi cộng vế theo vế ta có:

VT= \(\dfrac{1}{x^2+y+z}+\dfrac{1}{y^2+x+z}+\dfrac{1}{z^2+x+y}\le\dfrac{3+2\left(x+y+z\right)}{\left(x+y+z\right)^2}\)

Bài toán cm hoàn tất khi \(\dfrac{3+2\left(x+y+z\right)}{\left(x+y+z\right)^2}\le\dfrac{3}{\left(x+y+z\right)}\)

\(\Leftrightarrow3+2\left(x+y+z\right)\le3\left(x+y+z\right)\Leftrightarrow x+y+z\ge3\)

Áp dụng BĐT cauchy cho x;y;z>0 ta có:

\(x+y+z\ge3\sqrt[3]{xyz}=3.\sqrt[3]{1}=3\)

Ta có đpcm

6 tháng 1 2019

xyz=1,x,y,z>0

5 tháng 2 2022

\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)

\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)

\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)

11 tháng 10 2021

ai lm dc bài này ko ạ. mik đang cần lắmkhocroi

NV
19 tháng 5 2021

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow abc=1\)

\(P=\dfrac{a^2bc}{b+c}+\dfrac{ab^2c}{c+a}+\dfrac{abc^2}{a+b}=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
31 tháng 12 2021

\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

NV
13 tháng 11 2018

1/ Đây là cách chứng minh dựa vào kiến thức lớp 9, không sử dụng các định lý hàm sin hoặc hàm cos của cấp 3:

Bạn tự vẽ hình.

Kẻ tam giác ABC với đường cao AH, ta đặt

\(BC=a;AC=b;AB=c;AH=h_a;BH=x\Rightarrow CH=a-x\)

Trong tam giác vuông ABH: \(AB^2=BH^2+AH^2\Rightarrow c^2=x^2+h^2_a\) (1)

Trong tam giác vuông ACH: \(AC^2=CH^2+AH^2\Rightarrow b^2=\left(a-x\right)^2+h^2_a\) (2)

Trừ vế với vế của (1) cho (2) ta được:

\(c^2-b^2=x^2-\left(a-x\right)^2=2ax-a^2\Rightarrow x=\dfrac{a^2-b^2+c^2}{2a}\)

Thay x vào (1) ta được:

\(h^2_a=c^2-x^2=c^2-\left(\dfrac{a^2-b^2+c^2}{2a}\right)^2=\left(c-\dfrac{a^2-b^2+c^2}{2a}\right)\left(c+\dfrac{a^2-b^2+c^2}{2a}\right)\)

\(\Rightarrow h_a^2=\dfrac{\left(b^2-\left(a^2-2ac+c^2\right)\right)\left(a^2+2ac+c^2-b^2\right)}{4a^2}\)

\(\Rightarrow h_a^2=\dfrac{\left(b^2-\left(a-c\right)^2\right)\left(\left(a+c\right)^2-b^2\right)}{4a^2}\)

\(\Rightarrow h_a^2=\dfrac{\left(b+c-a\right)\left(a+b-c\right)\left(a+b+c\right)\left(a-b+c\right)}{4a^2}\) (3)

Gọi \(p=\dfrac{a+b+c}{2}\) là nửa chu vi tam giác

\(\Rightarrow a+b+c=2p\) ; \(a+b-c=2\left(p-c\right)\) ; \(b+c-a=2\left(p-a\right)\) ; \(a-b+c=2\left(p-b\right)\)

Thay vào (3) ta được:

\(h_a^2=\dfrac{2\left(p-a\right)2\left(p-c\right)2p.2\left(p-b\right)}{4a^2}=\dfrac{4p\left(p-a\right)\left(p-b\right)\left(p-c\right)}{a^2}\)

\(\Rightarrow h_a=\dfrac{2\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{a}\)

Mà ta đã biết công thức tính diện tích tam giác:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}h_a.a\)

\(\Rightarrow S=\dfrac{1}{2}\dfrac{2\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{a}.a=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

13 tháng 11 2018

Bài 2:

Áp dụng đẳng thức : \(a^2+b^2\ge2ab\) (xảy ra đẳng thức khi a = b),ta có :

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge2.\dfrac{x}{y}.\dfrac{y}{z}=\dfrac{2x}{z}\)

Tương tự : \(\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{2y}{z}\), \(\dfrac{z^2}{x^2}+\dfrac{x^2}{y^2}\ge\dfrac{2z}{y}\)

Cộng từng vế 3 BĐT trên ta được :

\(2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\right)\ge2\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\left(\text{đpcm}\right)\)

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

NV
1 tháng 3 2021

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{x^2+y^2+2}{\left(xy\right)^2+x^2+y^2+1}=1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+x^2+y^2+1}\ge1-\dfrac{\left(xy\right)^2-1}{\left(xy\right)^2+2xy+1}\)

\(\Rightarrow\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge1-\dfrac{\left(xy+1\right)\left(xy-1\right)}{\left(xy+1\right)^2}=1-\dfrac{xy-1}{xy+1}=\dfrac{2}{1+xy}\) (đpcm)

b. Tương tự câu a:

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+zx}\) ; \(\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{2}{1+yz}\)

Cộng vế với vế và rút gọn:

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{z+zx}\) (1)

Mà \(\left\{{}\begin{matrix}z\ge1\Rightarrow1+xy\le1+xyz\\y\ge1\Rightarrow1+zx\le1+xyz\\x\ge1\Rightarrow1+yz\le1+xyz\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}+\dfrac{1}{1+xyz}=\dfrac{3}{1+xyz}\) (2)

TỪ (1); (2) \(\Rightarrowđpcm\)

1 tháng 3 2021

a) Ta có: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\Leftrightarrow\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}+\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(1+xy\right)-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{\left(1+xy\right)-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(xy-x^2\right)\left(1+y^2\right)+\left(xy-y^2\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy+xy^3-x^2-x^2y^2+xy+x^3y-y^2-x^2y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{2xy+xy\left(x^2+y^2\right)-2x^2y^2-x^2-y^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy\left(x^2-2xy+y^2\right)-\left(x^2-2xy+y^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{xy\left(x-y\right)^2-\left(x-y\right)^2}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)(luôn đúng)

=> Đẳng thức ban đầu được chứng minh.

P/s: Cái đoạn sau bạn bổ sung thêm vào là vì x và y lớn hơn bằng 1 nên xy-1 sẽ lớn hơn hoặc bằng 0 nhé, mình lười quá ngại chèn:vv.

Còn câu b bạn đợi mình nháp xíu.