Tìm X,biết
631-\(\frac{2}{3}\):X=125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{125}+\frac{x+2}{124}+\frac{x+3}{123}+\frac{x+4}{122}+\frac{x+146}{5}=0\)
\(\left(\frac{x+1}{125}+1\right)+\left(\frac{x+2}{124}+1\right)+\left(\frac{x+3}{123}+1\right)+\left(\frac{x+4}{122}+1\right)+\left(\frac{x+146}{5}-4\right)=0\)
\(\frac{x+126}{125}+\frac{x+126}{124}+\frac{x+126}{123}+\frac{x+126}{122}+\frac{x+126}{5}=0\)
\(\left(x+126\right).\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)=0\)
vì \(\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)\ne0\)nên x + 126 = 0 \(\Rightarrow\)x = -126
Ta có : 3x + 3x + 2 = 810
=> 3x(1 + 32) = 810
=> 3x.10 = 810
=> 3x = 81
=> 3x = 34
=> x = 4
ta có \(3^3+3^x+2=810\)
=>\(3^x\left(1+3^2\right)=810\)
=>\(3^x.10=810\)
=>\(3^x=81\)
=>\(3^x=3^4\)
=>x=4
Vậy x=4
\(\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=>\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=>\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{3z^2}{75}\)
áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{3z^2}{75}=\frac{x^2+y^2-3z^2}{9+16-75}=\frac{50}{-50}=-1\)
\(\frac{x}{3}=-1=>x=-3\)
\(\frac{y}{4}=-1=>y=-4\)
\(\frac{z}{5}=-1=>z=-5\)
Vậy...
8/125 = 2x/5x
Ta có: 8=2.2.2=23
125=5.5.5=53
=> 8/125=23/53
=>x=3
bạn ơi như là cô giáo cho đề sai rồi kết quả phải là \(\frac{375}{376}\)thì mới giải được
Ta có:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+3}=\frac{125}{376}:\frac{1}{3}=\frac{375}{376}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{375}{376}=\frac{1}{376}\Leftrightarrow x+3=376\Leftrightarrow x=373\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
\(1-\frac{1}{x+3}=\frac{375}{376}\)
\(\frac{x+2}{x+3}=\frac{375}{376}\)
=> x + 2 = 375
=> x = 375 - 2
=> x = 373
\(631-\frac{2}{3}:x=125\)
\(\frac{2}{3}:x=631-125\)
\(\frac{2}{3}:x=506\)
\(x=\frac{2}{3}:506\)
\(x=\frac{1}{759}\)
631-2/3:x=125
=>2/3:x=506
=>x=1/759