Tổng số của 3 phân số tối giản là \(1\frac{17}{20}\). Tử số của phân số thứ nhất, phân số thứ hai,phân số thứ ba tỉ lệ với 3;7;11 và mẫu của 3 phân số đó theo thứ tự tỉ lệ với 10;20;40. Tìm 3 phân số đó .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hatsune Miku này ai trả biết là dùng dãy tỉ số cách đều cái mình cần là cách làm
Tổng 3 p/s tối giản là 37/20. biết tử của phân số thứ 1; phân số thứ 2;phân số thứ 3 lần lượt tỉ lệ với 3,7,11. mẫu của 3 phân số đó cũng lần lượt tỉ lệ với 10,20,40. tìm 3 phân số đó.\
Bài làm.
Gọi ba phân số lần lượt cần tìm là: \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\left(x,y,z\ne0\right)\)
Theo bài ra, ta có:
\(\frac{a}{3}=\frac{b}{7}=\frac{c}{11}\)(1)
\(\frac{x}{10}=\frac{y}{20}=\frac{z}{40}\Leftrightarrow x=\frac{y}{2}=\frac{z}{4}\)(2)
Từ (1)(2) =>
\(\frac{\frac{a}{3}}{x}=\frac{\frac{b}{7}}{\frac{y}{2}}=\frac{\frac{c}{11}}{\frac{z}{4}}=\frac{\frac{a}{x}}{3}=\frac{\frac{b}{y}}{\frac{7}{2}}=\frac{\frac{c}{z}}{\frac{11}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\frac{a}{x}}{3}=\frac{\frac{b}{y}}{\frac{7}{2}}=\frac{\frac{c}{z}}{\frac{11}{4}}=\frac{\frac{a}{x}+\frac{b}{y}+\frac{c}{z}}{3+\frac{7}{2}+\frac{11}{4}}=\frac{\frac{39}{20}}{\frac{37}{4}}=\frac{39}{185}\)
\(\frac{a}{x}=\frac{39}{185}.3=\frac{117}{185}\)
\(\frac{b}{y}=\frac{39}{185}.\frac{7}{2}=\frac{273}{370}\)
\(\frac{c}{z}=\frac{39}{185}.\frac{11}{4}=\frac{429}{740}\)