chứng minh :
2^2^2^...^2 (n số 2) > 2.2.2....2 (n số 2) ^ 2.2.2....2 (n số 2) với mọi n >= 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n2 và n là số lẻ
Ta có n2 = n.n
Vì n lẻ nên n.n là số lẻ
=> n2 lẻ (trái giả thiết)
Vậy n2 lẻ thì n lẻ
bài còn lại làm tương tự
1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.
Khi đó, n = 2k (k thuộc N*)
Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.
Vậy điều phản chứng sai. Ta có đpcm
2/ Tương tự.
Ta thấy: \(n^2-n+2=n^2-\frac{1}{2}.2.n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}\)
Vì (n-1/2)^2 là số chính phương mà 7/4 ko là số chính phương nên x^2 - n + 2 không phải là số chính phương với mọi n >= 2
1) Giải
Vì n thuộc N và n > 1
Ta có : n3 - 61n = n3 - n - 60n = ( n3 - n ) - 60n
Ta có : n3 - n = n2.n - 1.n = n(n2 - 1) = n(n-1)n(n+1)
=> n3 - n = ( n + 1 )n( n - 1 ) : hết cho 6 với mọi n thuộc N và n > 1 thì ( n - 1 )n(n + 1 ) là tích của ba số tự nhiên liên tiếp
Ta có ; 60n : hết cho 6 với mọi n thuộc N và n > 1
Do đó ( n3 - n ) - 60n : hết cho 6 với mọi n thuộc N và n > 1
Vậy với n thuộc N và n > 1 thì n3 - 61n : hết cho 6
2) Giải
Ta có : n( n + 2 ) ( 25n2 - 1 )
=> n( n + 2 ) ( n2 + 24n2 - 1 )
=> n( n + 2 ) [ ( n2 - 1 ) + 24n2 ]
=> n( n + 2 ) ( n2 - 1 ) + n( n + 2 ) . 24n2
=> ( n -1 )n( n + 1 ) ( n + 2 ) + n( n + 2 ) . 24n2 (1)
Ta có : n( n + 2 ) . 24n2 : hết cho 24 mọi n
vì n thuộc N , n > 1 nên ( n - 1 )n( n + 1 ) ( n + 2 ) là tích của bốn số tự nhiên liên tiếp
=> ( n - 1 )n( n + 1 ) ( n + 2 ) : hết cho 8 và chi hết cho 3
ta có 8.3 = 24 và U7CLN( 8 ; 3 ) = 1 (2)
Do đó ( n - 1 ) n ( n + 1 ) ( n + 2 ) : hết cho 24 (3)
Từ (1) ; (2) và (3) => n( n + 2 ) ( 25n2 - 1 : hết cho 24 với mọi n thuộc N và n > 1
Vậy với mọi n thuộc N và n > 1 thì n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24