Cho biểu thức:
\(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
a) Rút gọn P
b) Tìm những giá trị nguyên của a để P có giá trị nguyên
a: \(P=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{a\sqrt{a}-b\sqrt{b}}:\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2\left(a+\sqrt{ab}+b\right)}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
=2/a-1
b: Để P nguyên thì \(a-1\in\left\{1;-1;2;-2\right\}\)
=>\(a\in\left\{2;0;3\right\}\)