K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )

Để A > 0 thì có 2 trường hợp :

+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)

Để A < 0 thì có 2 trường hợp :

+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)

2 tháng 1 2019

b) Để A thuộc Z thì x -7 ⋮ x + 4

<=> x + 4 - 11 ⋮ x + 4 

Vì x + 4 ⋮ x + 4

=> 11 ⋮ x + 4

=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }

=> x thuộc { -3; 7; -5; -15 }

Vậy...........

a: Ta có: \(A=\left(\dfrac{4x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{x+2}\right)\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)

\(=\dfrac{4x+2\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{2x}-\dfrac{2}{x-2}\)

\(=\dfrac{4x+2x^2-8x+8}{x-2}\cdot\dfrac{1}{2x}-\dfrac{2}{x-2}\)

\(=\dfrac{2x^2-12x+8}{2x\left(x-2\right)}-\dfrac{2}{x-2}\)

\(=\dfrac{2x^2-12x+8-4x}{2x\left(x-2\right)}=\dfrac{2x^2-16x+8}{2x\left(x-2\right)}\)

\(=\dfrac{x^2-8x+4}{x\left(x-2\right)}\)

b: Thay x=4 vào A, ta được:

\(A=\dfrac{4^2-8\cdot4+4}{4\cdot\left(4-2\right)}=\dfrac{-12}{4\cdot2}=\dfrac{-12}{8}=-\dfrac{3}{2}\)

11 tháng 8 2019

các bn ơi đoạn sau mik viết nhầm đấy bỏ phần không có ngặc đi nha

10 tháng 7 2020

a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(\Leftrightarrow A=\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{-4\sqrt{x}}{\sqrt{x}-2}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)

\(\Leftrightarrow A=\frac{4x}{\sqrt{x}-3}\)

b) Để \(A=-1\)

\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=-1\)

\(\Leftrightarrow4x=3-\sqrt{x}\)

\(\Leftrightarrow4x+\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(4\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\4\sqrt{x}-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(ktm\right)\\\sqrt{x}=\frac{3}{4}\Leftrightarrow x=\frac{9}{16}\left(tm\right)\end{cases}}\)

Vậy để \(A=-1\Leftrightarrow x=\frac{9}{16}\)

c) Khi \(x=36\)

\(\Leftrightarrow A=\frac{4\cdot36}{\sqrt{36}-3}=\frac{144}{3}=48\)

23 tháng 11 2019

a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{\left(x-2\sqrt{x}\right)}-\frac{2}{\sqrt{x}}\right)\)

\(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)

\(A=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(x-2\right)}\right):\left(\frac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{-8\sqrt{x}-4x}{\left(\sqrt{x}+2\right)\sqrt{x}}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\right)\)

\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right).\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)

\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)

.......... Đến đây bạn tự nhân đa thức với đa thức xog rút gọn nha.

2 tháng 8 2019

\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow x=\sqrt{3}-1\)

\(\Rightarrow A=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}\)

\(b,A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}\)\(=1-\frac{4}{\sqrt{x}+2}\)

\(A\in Z\Leftrightarrow1-\frac{4}{\sqrt{x}+2}\in Z\Rightarrow\frac{4}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ_4\)

Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)Nhưng \(\sqrt{x}+2\ge2\)\(\Rightarrow\sqrt{x}+2\in\left\{2;4\right\}\)

\(Th1:\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

\(Th2:\sqrt{x}+2=4\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(KL:x\in\left\{0;4\right\}\)

a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)

\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)