cho tam giác ABCcó AB AC. từ C kẻ tia Cx song song với AB tia Cx và ba thuộc cùng 1nmp bờ AC vẽ CM phân giác ACX
a) so sánh BAC và ACX
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Am là tia phân giác của góc A ; Cn là tia phân giác của góc C
Ta có
\(\widehat{BAC}=\widehat{ACx}\) (Cx//AB ; hai góc so le trong )
Mặt khác
\(\widehat{A1}=\frac{1}{1}\widehat{BAC}\)( Am là tia phân giác )
\(\widehat{C1}=\frac{1}{2}\widehat{ACx}\) ( Cn là tia phân giác )
\(\Rightarrow\widehat{A1}=\widehat{C1}\)
Mà \(\widehat{A1};\widehat{C1}\) so le trong
=> Am//Cn (đpcm)
bạn Silver bullet ơi , dòng thứ 4 từ câu mặt khác của bn ở dưới mk thay như vậy đc ko bn ?
A1=1.BAC(...)
C1=2.ACX(...)
NHƯ VẬY ĐC KO BN ?
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)
\(\text{a)Xét tam giacAIB và tam giac AIC ta có:}\)
\(\text{AB=AC(GT)}\)
\(\text{ AI là cạnh chung}\)
\(\text{ IB=IC(I là trung điểm của BC) }\)
\(\Rightarrow\Delta AIB=\Delta AIC\left(c.c.c\right)\)
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC