Cho các số a , b , c thỏa mãn \(a+b+c=\frac{3}{2}\) Tìm giá trị nhỏ nhất của \(M=a^2+b^2+c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{a^2+b^2}\ge c-\frac{a}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\left(a+b+c\right)-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
Khi \(a=b=c=1\)
ta biến đổi a^2/(a+b^2)=a^3/a(a+b^2) áp dụng bất đẳng thức cosi cho 3 số a^3/a(a+b^2) ,a/2,a+b^2
ta đc a^3/a(a+b^2)+a/2+(a+b^2)/a>= 3a/2 tương tự b^3/b(b+c^2)+b/2+(b+c^2)/4>=3b/2
c^3/c(c+a^2)+c/2+(c+a^2)/4>=3c/2
đặt biểu thức đầu là P Ta có P +(a+b+c)/2+(a+b+c+a^2+b^2+c^2)/4>=3/2(a+...
mặt khác (a+b+c)^2=<3(a^2+b^2+c^2) => a^2+b^2+c^2>=3
thay vào =>P>=3/2 DẤU "=" XẢY RA <=> A=B=C=1
CHÚC BẠN THÀNH CÔNG
Ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tụ ta có:
\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) ta có:
\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(=3+3-\frac{ab+bc+ca+3}{2}\)
\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)
Ta có: \(VT^2=\left(1.a+1.b+1.c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\) (BĐT Bunhiacopxki)
Hay \(3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Vậy \(M_{min}=\frac{3}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)