K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

b ) 

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\) ( * ) 

Đkxđ : \(x^4-10x^2+9\ne0\)

Đặt \(a=x^2\left(a\ge0\right)\)

Ta được phương trình mới : \(a^2-10a+9\ne0\)

  \(\Delta\ne\left(-10\right)^2-4.1.9\ne64\)

\(\sqrt{\Delta}\ne\sqrt{64}\ne8\)

\(a_1\ne\frac{10+8}{2.1}\ne9\left(nhan\right)\)

\(a_2\ne\frac{10-8}{2.1}\ne1\left(nhan\right)\)

Vs \(a_1\ne9\Rightarrow x_1^2\ne9\Rightarrow x_1\ne\pm3\)

Vs \(a_2\ne1\Rightarrow x^2_2\ne1\Rightarrow x_2\ne\pm1\)

=>  Đkxđ : \(\hept{\begin{cases}x\ne\pm3\\x\ne\pm1\end{cases}}\)

( * ) => \(x^4-5x^2+4=0\)

Đặt : \(t=x^2\left(t\ge0\right)\)

Ta được phương trình mới : \(t^2-5t+4=0\)

                         \(\Delta=\left(-5\right)^2-4.1.4=9\)

                      \(\sqrt{\Delta}=\sqrt{9}=3\)

\(t_1=\frac{5+3}{2.1}=4\left(nhan\right)\)

\(t_2=\frac{5-3}{2.1}=1\left(nhan\right)\)

Vs \(t_1=4\Rightarrow x_1^2=4\Rightarrow x_1=\pm2\)

Vs \(t_2=1\Rightarrow x_2^2=1\Rightarrow x_2=\pm1\)

Vậy khi \(x=\left\{-1;1;-2;2\right\}\) thì phân thức \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\)

1 tháng 1 2019

chỗ này mình bị nhầm nè 

Vs \(t_1=4\Rightarrow x_1^2=4\Rightarrow x_1=\pm2\left(nhan\right)\)

Vs \(t_2=1\Rightarrow x_2^2=1\Rightarrow x_2=\pm1\left(loai\right)\)

Vậy khi \(x=\left\{-2;2\right\}\) thì phân thức \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\)

Học tốt 

8 tháng 8 2017

a) Để \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=0\) \(\Leftrightarrow x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+1=0\\x+1=0\end{cases}\Rightarrow x=-1}\)

b) ĐKXĐ : \(x^4-10x^2+9\ne0\Leftrightarrow\left(x-9\right)\left(x-1\right)\left(x+1\right)\left(x+9\right)\ne0\)

\(\Rightarrow x\ne\left\{-9;-1;1;9\right\}\)

Để \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\) \(\Leftrightarrow x^4-5x^2+4\ne0\)

\(\Leftrightarrow x^4-4x^2-x^2+4\ne0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-\left(x^2-4\right)\ne0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow x=\left\{-2;2\right\}\)(TMĐKXĐ )

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

26 tháng 9 2016

đk để phân thức = 0 là tử số =0

x4 - 5x2 + 4 = (x2 -1)(x2 - 4) = 0

x = -1;1;-2;2

26 tháng 9 2016

ồ quên, chỉ lấy 2 nghiệm x = -2;2

còn x = -1;1 (loại) vì làm mẫu = 0(vô nghĩa)

1 tháng 3 2020

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\left(x\ne\pm3;x\ne\pm1\right)\)

\(\Leftrightarrow x^4-5x^2+4=0\)

\(\Leftrightarrow x^4-4x^2-x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm1\left(ktm\right)\\x=\pm2\left(tm\right)\end{cases}}}\)

Vậy x=-2; x=2 

1 tháng 3 2020

\(Đkxđ:x^4-10x^2+9\ne0\Leftrightarrow\left(x^2-5\right)^2-16\ne0\)

\(\Leftrightarrow\left(x^2-5\right)^2\ne16\Leftrightarrow x\ne\pm1;\pm3\)

Với \(x\ne\pm1;\pm3\)Ta có"

\(\frac{x^4-5x^2+4}{x^4-10x^2+9}=0\Rightarrow x^4-5x^2+4=0\)

\(\Leftrightarrow\left(x^2-2\right)^2-x^2=0\)

\(\Leftrightarrow\left(x^2-2+x\right)\left(x^2-2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-2+x=0\\x^2-2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x^2+2\frac{1}{2}x+\frac{1}{4}\right)-\frac{9}{4}=0\\\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{9}{4}=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\x=-2\end{cases}}\\\hept{\begin{cases}x=2\\x=-1\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{cases}}\\\hept{\begin{cases}x=2\left(TM\right)\\x=-1\left(KTM\right)\end{cases}}\end{cases}}\)

Vậy \(x=\pm2\)

21 tháng 6 2023

Câu 2: 

a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)

\(=-2x^2+10x+3x-3+2x^2-13x\)

\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)

\(=0+0-3\)

\(=-3\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)

\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)

\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)

\(=0+0+0+0\)

\(=0\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

21 tháng 6 2023

Câu 4: 

a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)

\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)

\(A=-7\)

Thay \(x=-2\) vào biểu thức A ta có:

\(A=-7\)

Vậy giá trị của biểu thức A là -7 tại \(x=-2\)

b) \(B=x^5-15x^4+16x^3-29x^2+13x\)

\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(B=-x\)

Thay \(x=14\) vào biểu thức B ta được:

\(B=-14\)

Vậy giá trị của biểu thức B tại \(x=14\) là -14

12 tháng 3 2020

Bài 2:

(1 + x)3 + (1 - x)- 6x(x + 1) = 6

<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6

<=> -6x + 2 = 6

<=> -6x = 6 - 2

<=> -6x = 4

<=> x = -4/6 = -2/3

Bài 3: 

a) (7x - 2x)(2x - 1)(x + 3) = 0

<=> 10x3 + 25x2 - 15x = 0

<=> 5x(2x - 1)(x + 3) = 0

<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0

<=> x = 0 hoặc x = 1/2 hoặc x = -3

b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0

<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0

<=> -x2 + 9 = 0

<=> -x2 = -9

<=> x2 = 9

<=> x = +-3

c) (x + 4)(5x + 9) - x2 + 16 = 0

<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0

<=> 4x2 + 29x + 52 = 0

<=> 4x2 + 13x + 16x + 52 = 0

<=> 4x(x + 4) + 13(x + 4) = 0

<=> (4x + 13)(x + 4) = 0

<=> 4x + 13 = 0 hoặc x + 4 = 0

<=> x = -13/4 hoặc x = -4

12 tháng 3 2020

Lê Nhật Hằng cảm ơn bạn nha

11 tháng 12 2016

Lấy 2x3 - 5x2 + 10x - 4 chia cho 2x - 1 ta được x2 - 2x + 4

Phân tích x2 - 2x + 4 = x2 -2x + 1 + 3 = (x + 1)2 + 3 ==> x = -1 đề có GTNN = 3