Cho a> 0, b>0, c>0, a +b +c=1. CMR: ( 1/a -1 ) ( 1/b -1 ) ( 1/c -1 ) > =8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)
\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)
Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM
<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
<=>c(a+b)(a+b+c)=-ab(a+b)
<=>(a+b)(ac+bc+c2)+ab(a+b)=0
<=>(a+b)(ac+bc+ab+c2)=0
<=>(a+b)(a+c)(c+b)=0
a+b=0
<=> b+c=o
c+a=0
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b)(c+a)(c+b)=0$
$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$
Không mất tổng quát giả sử $a+b=0$
$\Leftrightarrow a=-b$.
Khi đó:
$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$
$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)
Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.
Giải:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{1}{c}+\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Vậy ...
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
⇔ bc(a+b+c) + ac(a+b+c) + ab(a+b+c) = abc (quy đồng và khử mẫu vì a,b,c ≠ 0)
\(\Leftrightarrow abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc=abc\)
\(\Leftrightarrow bc\left(b+c\right)+a\left(c^2+2bc+b^2\right)+a^2\left(b+c\right)=0\)(chuyển abc ở vế phải sang chỉ còn 2abc rồi đặt nhân tử chung)
\(\Leftrightarrow\left(b+c\right)\left(bc+ab+ac+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[b\left(a+c\right)+a\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\left(đpcm\right)\)
\(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)
\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\ge\dfrac{2\sqrt{bc}}{a}.\dfrac{2\sqrt{ac}}{b}.\dfrac{2\sqrt{ab}}{c}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)