K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

Ta có X ko thể bằng 2 vì 37,8*2=75,6<92,7

nếu X=3 thì 37,8*3=113,4>92,7,thỏa mãn điều kiện đề bài

vậy nếu X> 2 và X thuộc N thì 37,8*X>92,7

28 tháng 11 2021

b) 8

c) 3

28 tháng 11 2021

b) 50-3(x+4)=14

3(x+4)=36

x+4=13

x=9

c)2⁸‐ⁿ+75=107

2⁸-ⁿ=32

2⁸-ⁿ=2⁵

8-x=5

x=3

13 tháng 2 2018

Ta có : 

\(\left|3x+18\right|\ge0\) và \(\left|4x-28\right|\ge0\) \(\Rightarrow\) \(\left|3x+18\right|+\left|4y-28\right|\ge0\)

Mà \(\left|3x+18\right|+\left|4y-28\right|\le0\) ( đề bài cho )

\(\Rightarrow\)\(\left|3x+18\right|+\left|4y-28\right|=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-18\\4y=28\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\y=7\end{cases}}}\)

Vậy \(x=-6\) và \(y=7\)

13 tháng 2 2018

Ta có \(\left|3x+18\right|+\left|4y-28\right|\le0\)

Mà \(\left|3x+18\right|\ge0\forall x;\left|4y-28\right|\ge0\forall y\)

=> |3x+18|+|4y-28|=0

=> 3x+18=4y-28=0

• 3x+18=0 <=> 3x=-18 <=> x=-6

• 4y-28=0 <=> 4y=28 <=> y=7

Vậy ...

27 tháng 7 2021

\(\Leftrightarrow\dfrac{1}{2}x+\dfrac{2}{3}x-x=-4\Leftrightarrow\dfrac{3x+4x-6x}{6}=-\dfrac{24}{6}\)

\(\Rightarrow x=-24\)

27 tháng 7 2021

b) \(x.\left(\dfrac{1}{2}+\dfrac{2}{3}-1\right)=-4\)

\(x.\dfrac{-1}{6}=-4\)

\(x=-4:\dfrac{-1}{6}\)

\(x=-24\)

\(2x\left(x+3\right)-3\left(x^2+1\right)=x+1-x\left(x-2\right)\)

\(\Leftrightarrow2x^2+6x-3x^2-3=x+1-x^2+2x\)

\(\Leftrightarrow-x^2+6x-3=-x^2+3x+1\)

\(\Leftrightarrow3x=4\)

hay \(x=\dfrac{4}{3}\)

7 tháng 9 2021

\(2x\left(x+3\right)-3\left(x^2+1\right)=x+1-x\left(x-2\right)\)

\(\Leftrightarrow2x^2+6x-3x^2-3=x+1-x^2+2x\)

\(\Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\)

13 tháng 1 2018

b ) - 25 + ( - 16 + x ) = 0

               ( - 16 + x ) = 0 - ( - 25 )

                 - 16 + x   = 25

                          x    = 25 - ( - 16 )

                          x    = 41

Vậy x = 41

13 tháng 1 2018
giúp mk nha trước 3h
16 tháng 6 2021

Bài 2:

Với x,y,z,t là số tự nhiên khác 0

Có \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)

\(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)

\(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)

\(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)

Cộng vế với vế \(\Rightarrow1< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}=2\)

=> M không là số tự nhiên.

Bài 1:

Ta có:

\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\) 

\(B=\left(1+\dfrac{2007}{2}\right)+\left(1+\dfrac{2006}{3}\right)+...+\left(1+\dfrac{2}{2007}\right)+\left(1+\dfrac{1}{2008}\right)+1\) 

\(B=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}\) 

\(B=2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\) 

\(\Rightarrow\dfrac{A}{B}=\dfrac{2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}=2009\)

20 tháng 10 2021

x=7,y=1

_HT_

20 tháng 10 2021

cho e sin cách trình bày đi

21 tháng 10 2021

\(B=\overline{2x10y9}⋮9\left(0\le x,y\le9\right)\)

\(\Rightarrow\left(2+x+1+0+y+9\right)⋮9\)

\(\Rightarrow\left(12+x+y\right)⋮9\)

Do \(0\le x,y\le9\)

\(\Rightarrow\left[{}\begin{matrix}x+y=6\\x+y=15\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;5\right),\left(5;1\right),\left(2;4\right),\left(4;2\right),\left(3;3\right),\left(6;9\right),\left(9;6\right),\left(8;7\right),\left(7;8\right)\right\}\)