1,Một mảnh vườn lúc đầu có dạng tam giác ABC vuông tại A và AB =4m, AC = 3m. Người ta sử dụng lưới ngăn dọc theo hai điểm E, M. ( E là trung điểm AC, M là trung điểm BC) để chia mảnh vườn thành hai phần trồng rau và hoa. Tính diện tích của phần mảnh vườn EMC.
2, Tìm giá trị nhỏ nhất của biểu thức A= x2 _2x + 4
Tìm các giá trị nguyên của n để n3 + n2 + 11 chia hết cho n+1
2. Min A=4 tại x=1
chia VT cho VP rồi cho số dư bằng 0 thôi bn
hoa học trò sai rồi
\(A=x^2-2x+1+3=\left(x-1\right)^2+3\ge3\)
dấu = xảy ra khi x-1=0
=> x=1
vậy ...
\(n^3+n^2+11=n^2.\left(n+1\right)+11⋮n+1\Rightarrow11⋮n+1\Rightarrow...\)